-
Previous investigations demonstrated that a semiconductor laser subjected to optical injection can realize period-one (P1) oscillation output under suitable operational parameters, which can be used to obtain high quality photonic microwave. In this paper, we propose a scheme for simultaneously generating two channel photonic microwave based on the P1 oscillations of two orthogonally polarization modes in a vertical-cavity surface-emitting laser (VCSEL) subjected to an elliptical polarization optical injection, and the relevant characteristics of obtained photonic microwave are numerically simulated and analyzed. The results show that under suitable operational parameters, a free-running VCSEL (named master VCSEL, M-VCSEL) can output an elliptical polarization light in which both X and Y polarization components of the elliptical polarization light oscillate at the same frequency. By using the elliptical polarization light from the M-VCSEL as an injection light into another VCSEL (named slave VCSEL, S-VCSEL), both two polarization components of the S-VCSEL can be driven into P1 oscillation through selecting suitable injection strength under a fixed frequency detuning between the M-VCSEL and the S-VCSEL. Based on the P1 oscillation, two orthogonally photonic microwave signals can be obtained. With the increase of the injection strength from the M-VCSEL, the frequency of photonic microwave shows a gradually increasing trend while the power of photonic microwave displays an increasing process accompanied by slight ripples. Combining the distribution mappings of the frequency, the power, and the amplitude difference between the first sideband and the second sideband of the photonic microwave in the parameter space of the injection strength and the frequency detuning, certain regions with optimally operational parameters can be determined for acquiring high quality photonic microwave.
-
Keywords:
- vertical-cavity surface-emitting laser /
- elliptical polarization optical injection /
- period-one oscillation /
- photonic microwave
[1] Sacher J, Baums D, Panknin P, Elsässer W, G&246;bel E O 1992 Phys. Rev. A 45 1893
[2] Simpson T B, Liu J M, Gavrielides A, Kovanis V, Alsing P M 1994 Appl. Phys. Lett. 64 3539
[3] Qi X Q, Liu J M 2011 IEEE J. Quantum Electron. 47 762
[4] Kong H J, Wu Z M, Wu J G, Xie Y K, Lin X D, Xia G Q 2008 Chaos Soliton. Fract. 36 18
[5] Yan S L 2009 Acta Opt. Sin. 29 996 (in Chinese) [颜森林 2009 光学学报 29 996]
[6] Wang A B, Wan Y C, Wang J F 2009 Opt. Lett. 34 1144
[7] Chen J J, Xia G Q, Wu Z M 2015 Chin. Phys. B 24 024210
[8] Simpson T B, Liu J M, Gavrielides A 1995 IEEE Photon. Technol. Lett. 7 709
[9] Liu J M, Chen H F, Meng X J, Simpson T B 1997 IEEE Photon. Technol. Lett. 9 1325
[10] Murakami A, Kawashima K, Atsuki K 2003 IEEE J. Quantum Electron. 39 1196
[11] Yan S L 2005 Chin. Opt. Lett. 3 283
[12] Tang S, Chen H F, Hwang S K, Liu J M 2002 IEEE Trans. Circ. Syst. 49 163
[13] Li X Z, Chan S C 2012 Opt. Lett. 37 2163
[14] Simpson T B, Liu J M, Huang K F, Tai K 1997 Quantum Semiclass. Opt. 9 765
[15] Juan Y S, Lin F Y 2011 IEEE Photon. J. 3 644
[16] Lin X D, Deng T, Xie Y Y, Wu J G, Chen J G, Wu Z M, Xia G Q 2012 Acta Phys. Sin. 61 194212 (in Chinese) [林晓东, 邓涛, 解宜原, 吴加贵, 陈建国, 吴正茂, 夏光琼 2012 61 194212]
[17] Chan S C, Liu J M 2006 IEEE J. Quantum Electron. 42 699
[18] Chan S C, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 1025
[19] Fan L, Wu Z M, Deng T, Wu J G, Tang X, Chen J J, Mao S, Xia G Q https://www.osapublishing.org/jlt/abstract.cfm?uri=jlt-32-23-4058
[20] Zhuang J P, Chan S C https://www.osapublishing.org/ol/fulltext.cfm?uri=ol-38-3-344&id=248736
[21] Chan S C, Hwang S K, Liu J M 2007 Opt. Express 15 14921
[22] Cui C, Chan S C 2012 IEEE J. Quantum Electron. 48 490
[23] Diaz R, Chan S C, Liu J M 2006 Opt. Lett. 31 3600
[24] Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728
[25] Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765
[26] Michalzik R 2013 VCSELs: Fundamentals, Technology and Applications of Vertical-cavity Surface-emitting Lasers (Berlin: Springer) p217
[27] Al-Seyab R, Schires K, Hurtado A, Henning I D, Adams M J 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700512
[28] Liu Q X, Pan W, Zhang L Y, Li N Q, Yan J 2015 Acta Phys. Sin. 64 024209 (in Chinese) [刘庆喜, 潘炜, 张力月, 李念强, 阎娟 2015 64 024209]
-
[1] Sacher J, Baums D, Panknin P, Elsässer W, G&246;bel E O 1992 Phys. Rev. A 45 1893
[2] Simpson T B, Liu J M, Gavrielides A, Kovanis V, Alsing P M 1994 Appl. Phys. Lett. 64 3539
[3] Qi X Q, Liu J M 2011 IEEE J. Quantum Electron. 47 762
[4] Kong H J, Wu Z M, Wu J G, Xie Y K, Lin X D, Xia G Q 2008 Chaos Soliton. Fract. 36 18
[5] Yan S L 2009 Acta Opt. Sin. 29 996 (in Chinese) [颜森林 2009 光学学报 29 996]
[6] Wang A B, Wan Y C, Wang J F 2009 Opt. Lett. 34 1144
[7] Chen J J, Xia G Q, Wu Z M 2015 Chin. Phys. B 24 024210
[8] Simpson T B, Liu J M, Gavrielides A 1995 IEEE Photon. Technol. Lett. 7 709
[9] Liu J M, Chen H F, Meng X J, Simpson T B 1997 IEEE Photon. Technol. Lett. 9 1325
[10] Murakami A, Kawashima K, Atsuki K 2003 IEEE J. Quantum Electron. 39 1196
[11] Yan S L 2005 Chin. Opt. Lett. 3 283
[12] Tang S, Chen H F, Hwang S K, Liu J M 2002 IEEE Trans. Circ. Syst. 49 163
[13] Li X Z, Chan S C 2012 Opt. Lett. 37 2163
[14] Simpson T B, Liu J M, Huang K F, Tai K 1997 Quantum Semiclass. Opt. 9 765
[15] Juan Y S, Lin F Y 2011 IEEE Photon. J. 3 644
[16] Lin X D, Deng T, Xie Y Y, Wu J G, Chen J G, Wu Z M, Xia G Q 2012 Acta Phys. Sin. 61 194212 (in Chinese) [林晓东, 邓涛, 解宜原, 吴加贵, 陈建国, 吴正茂, 夏光琼 2012 61 194212]
[17] Chan S C, Liu J M 2006 IEEE J. Quantum Electron. 42 699
[18] Chan S C, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 1025
[19] Fan L, Wu Z M, Deng T, Wu J G, Tang X, Chen J J, Mao S, Xia G Q https://www.osapublishing.org/jlt/abstract.cfm?uri=jlt-32-23-4058
[20] Zhuang J P, Chan S C https://www.osapublishing.org/ol/fulltext.cfm?uri=ol-38-3-344&id=248736
[21] Chan S C, Hwang S K, Liu J M 2007 Opt. Express 15 14921
[22] Cui C, Chan S C 2012 IEEE J. Quantum Electron. 48 490
[23] Diaz R, Chan S C, Liu J M 2006 Opt. Lett. 31 3600
[24] Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728
[25] Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765
[26] Michalzik R 2013 VCSELs: Fundamentals, Technology and Applications of Vertical-cavity Surface-emitting Lasers (Berlin: Springer) p217
[27] Al-Seyab R, Schires K, Hurtado A, Henning I D, Adams M J 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700512
[28] Liu Q X, Pan W, Zhang L Y, Li N Q, Yan J 2015 Acta Phys. Sin. 64 024209 (in Chinese) [刘庆喜, 潘炜, 张力月, 李念强, 阎娟 2015 64 024209]
Catalog
Metrics
- Abstract views: 6628
- PDF Downloads: 188
- Cited By: 0