-
提出一种基于1550 nm垂直腔表面发射激光器(1550 nm-VCSEL)获取高质量微波信号的全光方案. 在该方案中, 采用波长位于VCSEL中被抑制模式的中心波长附近、振动方向与VCSEL中主导模式相同的偏振光注入(即平行注入) 1550 nm-VCSEL获取高频微波, 并借助双光反馈对该高频微波的线宽进行窄化. 一方面, 基于VCSEL的自旋反转模型, 从理论上分析了采用该方案产生微波信号的可行性; 另一方面, 通过构建相应的实验系统, 对该方案产生的微波的特性进行初步实验研究. 实验结果表明: 在合适的注入条件下, 1550 nm-VCSEL能够产生30 GHz左右的微波信号, 但该信号的线宽较宽(百兆水平); 引入双光反馈后, 微波线宽可被压窄两个数量级以上, 得到了线宽低于1 MHz、信噪比大于40 dB的微波信号.
-
关键词:
- 垂直腔表面发射激光器 /
- 平行偏振光注入 /
- 光子微波 /
- 双光反馈
Photonic microwave generation has attracted much attention in recent years due to its potential applications in various fields such as radio-over-fiber communication, signal processing and radar systems. So far, different photonic microwave generation schemes have been proposed and investigated, such as the optical heterodyne method based on the beat of two independent lasers with a certain wavelength difference, the external modulation method based on electro-optical modulator, the dual-mode beat method based on the monolithic dual-mode semiconductor lasers, and the optoelectronic microwave oscillator method based on optoelectronic feedback loops. These schemes have their own advantages and deficiencies. Unlike the above schemes, in this paper we propose an all optical scheme for generating high-quality microwave based on a 1550 nm vertical-cavity surface-emitting laser (1550 nm-VCSEL). For such a scheme, high frequency microwave can be obtained based on a 1550 nm-VCSEL subjected to external optical injection, where the polarization of the injected light is the same as that of the dominant mode of the free-running 1550 nm-VCSEL (named parallel-polarized optical injection) and its wavelength is adjusted to being close to the wavelength of the suppressed polarization mode of the free-running 1550 nm-VCSEL. With the aid of double optical feedback, the linewidth of the obtained microwave can be narrowed. In this work, firstly, the feasibility of microwave generation based on parallel-polarized optically injected 1550 nm-VCSEL is analyzed theoretically by using the spin-flip model. Next, a corresponding experimental system is constructed, and the performance of microwave generation is preliminarily investigated experimentally. The experimental results show that 30 GHz microwave signals could be obtained based on a parallel-polarized, optically injected 1550 nm-VCSEL under suitable injection parameters, but the linewidth of microwave signal is relatively wide (hundreds of MHz). Finally, after introducing double optical feedback, the linewidth of microwave signal can be reduced by more than two orders of magnitude and narrowed to less than 1 MHz, meanwhile the signal-noise ratio is larger than 40 dB. This work is helpful to develop relevant techniques to acquire high-performance narrow linewidth photonic microwave.-
Keywords:
- vertical-cavity surface-emitting laser /
- parallel-polarized optically injection /
- photonic microwave /
- double optical feedback
[1] Yao J P 2009 J. Lightw. Technol. 27 314
[2] Qi X Q, Liu J M 2011 IEEE J. Sel. Top. Quantum Electron. 17 1198
[3] Pan B W, Lu D, Sun Y, Yu L Q, Zhang L M, Zhao L J 2014 Opt. Lett. 39 6395
[4] Hyodo M, Abedin K S, Onodera N 1999 Opt. Commun. 171 159
[5] Han J, Seo B J, Han Y, Jalali B, Fetterman H R 2003 J. Lightw. Technol. 21 1504
[6] Liu W S, Jiang M, Chen D, He S L 2009 J. Lightw. Technol. 27 4455
[7] Hwang S K, Liu J M, White J K 2004 IEEE J. Sel. Top. Quantum Electron. 10 974
[8] Chan S C, Liu J M 2006 IEEE J. Quantum Electron. 42 699
[9] Chan S C, Hwang S K, Liu J M 2007 Opt. Express 15 14921
[10] Niu S X, Wang Y C, He H C, Zhang M J 2009 Acta Phys. Sin. 58 7241 (in Chinese) [牛生晓, 王云才, 贺虎成, 张明江 2009 58 7241]
[11] Chan S C 2010 IEEE J. Quantum Electron. 46 421
[12] Juan Y S, Lin F Y 2011 IEEE Photon. J. 3 644
[13] Liao Y H, Lin F Y 2013 Opt. Express 21 23568
[14] Fan L, Wu Z M, Deng T, Wu J G, Tan X, Chen J J, Mao S, Xia G Q 2014 J. Light. Technol. 32 4660
[15] Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728
[16] Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765
[17] Altes J B, Gatare I, Panajotov K, Thienpont H, Sciamanna M 2006 IEEE J. Quantum Electron. 42 198
[18] Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619
[19] Li N Q, Pan W, Yan L S, Luo B, Xu M F, Jiang N 2011 Chin. Phys. B 20 060502
[20] Jiang N, Pan W, Luo B, Xiang S Y, Yang L 2012 IEEE Photon. Technol. Lett. 24 1094
[21] Xiang S Y, Pan W, Li N Q, Yan L S, Luo B, Zhang L Y, Zhu H N 2013 IEEE J. Quantum Electron. 49 274
[22] Quirce A, Valle A 2012 Opt. Express 20 13390
[23] Chen Y L, Wu Z M, Tang X, Lin X D, Wei Y, Xia G Q 2013 Acta Phys. Sin. 62 104207 (in Chinese) [陈于淋, 吴正茂, 唐曦, 林晓东, 魏月, 夏光琼 2013 62 104207]
[24] Perez P, Quirce A, Valle A, Consoli A, Noriega I, Pesquera L, Esquivias I 2015 IEEE Photon. J. 7 5500614
[25] Gatare I, Sciamanna M, Locquet A, Panajotov K 2007 Opt. Lett. 32 1629
[26] Seyab R A, Schires K, Khan N A, Hurtado A, Henning I D, Adams M J 2011 IEEE J. Sel. Top. Quantum Electron. 17 1242
[27] Torre M S, Hurtado A, Quirce A, Valle A, Pesquera L, Adams M J 2011 IEEE J. Quantum Electron. 47 92
[28] Sciamanna M, Panajotov K 2006 Phys. Rev. A 73 023811
[29] Chan S C, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 1025
-
[1] Yao J P 2009 J. Lightw. Technol. 27 314
[2] Qi X Q, Liu J M 2011 IEEE J. Sel. Top. Quantum Electron. 17 1198
[3] Pan B W, Lu D, Sun Y, Yu L Q, Zhang L M, Zhao L J 2014 Opt. Lett. 39 6395
[4] Hyodo M, Abedin K S, Onodera N 1999 Opt. Commun. 171 159
[5] Han J, Seo B J, Han Y, Jalali B, Fetterman H R 2003 J. Lightw. Technol. 21 1504
[6] Liu W S, Jiang M, Chen D, He S L 2009 J. Lightw. Technol. 27 4455
[7] Hwang S K, Liu J M, White J K 2004 IEEE J. Sel. Top. Quantum Electron. 10 974
[8] Chan S C, Liu J M 2006 IEEE J. Quantum Electron. 42 699
[9] Chan S C, Hwang S K, Liu J M 2007 Opt. Express 15 14921
[10] Niu S X, Wang Y C, He H C, Zhang M J 2009 Acta Phys. Sin. 58 7241 (in Chinese) [牛生晓, 王云才, 贺虎成, 张明江 2009 58 7241]
[11] Chan S C 2010 IEEE J. Quantum Electron. 46 421
[12] Juan Y S, Lin F Y 2011 IEEE Photon. J. 3 644
[13] Liao Y H, Lin F Y 2013 Opt. Express 21 23568
[14] Fan L, Wu Z M, Deng T, Wu J G, Tan X, Chen J J, Mao S, Xia G Q 2014 J. Light. Technol. 32 4660
[15] Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728
[16] Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765
[17] Altes J B, Gatare I, Panajotov K, Thienpont H, Sciamanna M 2006 IEEE J. Quantum Electron. 42 198
[18] Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619
[19] Li N Q, Pan W, Yan L S, Luo B, Xu M F, Jiang N 2011 Chin. Phys. B 20 060502
[20] Jiang N, Pan W, Luo B, Xiang S Y, Yang L 2012 IEEE Photon. Technol. Lett. 24 1094
[21] Xiang S Y, Pan W, Li N Q, Yan L S, Luo B, Zhang L Y, Zhu H N 2013 IEEE J. Quantum Electron. 49 274
[22] Quirce A, Valle A 2012 Opt. Express 20 13390
[23] Chen Y L, Wu Z M, Tang X, Lin X D, Wei Y, Xia G Q 2013 Acta Phys. Sin. 62 104207 (in Chinese) [陈于淋, 吴正茂, 唐曦, 林晓东, 魏月, 夏光琼 2013 62 104207]
[24] Perez P, Quirce A, Valle A, Consoli A, Noriega I, Pesquera L, Esquivias I 2015 IEEE Photon. J. 7 5500614
[25] Gatare I, Sciamanna M, Locquet A, Panajotov K 2007 Opt. Lett. 32 1629
[26] Seyab R A, Schires K, Khan N A, Hurtado A, Henning I D, Adams M J 2011 IEEE J. Sel. Top. Quantum Electron. 17 1242
[27] Torre M S, Hurtado A, Quirce A, Valle A, Pesquera L, Adams M J 2011 IEEE J. Quantum Electron. 47 92
[28] Sciamanna M, Panajotov K 2006 Phys. Rev. A 73 023811
[29] Chan S C, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 1025
计量
- 文章访问数: 6531
- PDF下载量: 281
- 被引次数: 0