Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Strain field tuning the electronic and magnetic properties of semihydrogenated two-bilayer GaN nanosheets

Xiao Mei-Xia Liang You-Ping Chen Yu-Qin Liu-Meng

Citation:

Strain field tuning the electronic and magnetic properties of semihydrogenated two-bilayer GaN nanosheets

Xiao Mei-Xia, Liang You-Ping, Chen Yu-Qin, Liu-Meng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, first-principles calculations based on the density functional theory, are performed to investigate the effects of strain field on the electronic and magnetic properties of two-bilayer gallium nitride (GaN) nanosheets. The two-bilayer GaN nanosheet without surface modification forms a planar graphitic structure, whereas that with full hydrogenation for the surface Ga and N atoms adopts the energetically more favorable wurtzite structure. Surface hydrogenation is proven to be an effective way to induce a transition from indirect to direct band gap. The bare and fully-hydrogenated GaN nanosheets are nonmagnetic semiconductors. When only one-side Ga or N atoms on the surface are hydrogenated, the semihydrogenated two-bilayer GaN nanosheets will preserve their initial wurtzite structures. The two-bilayer GaN nanosheet with one-side N atoms hydrogenated transforms into a nonmagnetic metal, while that with one-side Ga atoms hydrogenated (H-GaN) is a ferromagnetic semiconductor with band gaps of 3.99 and 0.06 eV in the spin-up and spin-down states, respectively. We find that the two-bilayer H-GaN nanosheets will maintain ferromagnetic states under a strain field and the band gaps Eg in spin-up and spin-down states are a function of strain . As the tensile strain is +6%, the band gap in spin-up state reduces to 2.71 eV, and that in spin-down state increases to 0.41 eV for the two-bilayer H-GaN nanosheets. Under the compressive strain field, the two-bilayer H-GaN nanosheets will show a transition from semiconducting to half-metallici state under compression of -1%, where the spin-up state remains as a band gap insulator with band gap of 4.16 eV and the spin-down state is metallic. Then the two-bilayer H-GaN nanosheets will turn into fully-metallic properties with bands crossing the Fermi level in the spin-up and spin-down states under a compressive strain of -6%. Moreover, the value of binding energy Eb for the two-bilayer H-GaN nanosheet decreases (increases) monotonically with increasing compressive (tensile) strain. It is found that although hydrogenation on one-side Ga atoms of the two-bilayer H-GaN nanosheets is preferred to be under compressive strain, the two-bilayer H-GaN nanosheets are still the energetically favorable structures. The physical mechanisms of strain field tuning band gaps in the spin-up and spin-down states for the two-bilayer H-GaN nanosheets are mainly induced by the combined effects of through-bond and p-p direct interactions. Our results demonstrate that the predicted diverse and tunable electronic and magnetic properties may lead to the potential application of GaN nanosheets in novel electronic and spintronic nanodevices.
      Corresponding author: Xiao Mei-Xia, mxxiao@xsyu.edu.cn
    • Funds: Project supported by the Scientific Research Foundation of the Education Department of Shaanxi Province, China (Grant No. 2013JK0894), the National College Students' Training Programs for Innovation and Entrepreneurship of Shaanxi province, Chine (Grant No. 201510705230), the Youth Science and Technology Innovation Fund of Xi'an Shiyou University, China (Grant No. 2012BS004), and the Provincial Superior Discipline for Materials Science and Engineering of Xi'an Shiyou University, China (Grant No. 312010005).
    [1]

    Morkoc H, Strite S, Gao G B, Lin M E, Sverdlov B, Burns M 1994 J. Appl. Phys. 76 1363

    [2]

    Liu Y A, Zhuang Y Q, Du L, Su Y H 2013 Acta Phys. Sin. 62 140703 (in Chinese) [刘宇安, 庄奕琪, 杜磊, 苏亚慧 2013 62 140703]

    [3]

    Zhang D Y, Zheng X H, Li X F, Wu Y Y, Wang J F, Yang H 2012 Chin. Phys. Lett. 29 068801

    [4]

    Ma Y D, Dai Y, Guo M, Niu C W, Yu L, Huang B B 2011 Appl. Surf. Sci. 257 7845

    [5]

    Lopez-Bezanilla A, Ganesh P, Kent P R C, Sumpter B G 2014 Nano Research 7 63

    [6]

    Goldberger J, He R R, Zhang Y F, Lee S, Yan H Q, Choi H J, Yang P D 2003 Nature 422 599

    [7]

    Bae S Y, Seo H W, Park J, Yang H, Kim H, Kim S 2003 Appl. Phys. Lett. 82 4564

    [8]

    Xiang X, Cao C B, Huang F L, Lv R T, Zhu H S 2004 J. Cryst. Growth 263 25

    [9]

    Duan X F, Lieber C M 2000 J. Am. Chem. Soc. 122 188

    [10]

    Guo R H, Lu T P, Jia Z G, Shang L, Zhang H, Wang R, Zhai G M, Xu B S 2015 Acta Phys. Sin. 64 127305 (in Chinese) [郭瑞花, 卢太平, 贾志刚, 尚林, 张华, 王蓉, 翟光美, 许并社 2015 64 127305]

    [11]

    Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T, Ciraci S 2009 Phys. Rev. B 80 155453

    [12]

    Freeman C L, Claeyssens F, Allan N L, Harding J H 2006 Phys. Rev. Lett. 96 066102

    [13]

    Gao N, Zheng W T, Jiang Q 2012 Phys. Chem. Chem. Phys. 14 257

    [14]

    Chen X F, Lian J S, Jiang Q 2012 Phys. Rev. B 86 125437

    [15]

    Zhang W X, Li T, Gong S B, He C, Duan L 2015 Phys. Chem. Chem. Phys. 17 10919

    [16]

    Li S, Wu Y F, Liu W, Zhao Y H 2014 Chem. Phys. Lett. 609 161

    [17]

    Tang Q, Cui Y, Li Y F, Zhou Z, Chen Z F 2011 J. Phys. Chem. C 115 1724

    [18]

    Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y, Jena P 2009 Nano Lett. 9 3867

    [19]

    Dai Q Q, Zhu Y F, Jiang Q 2012 Phys. Chem. Chem. Phys. 14 1253

    [20]

    Xiao W Z, Wang L L, Xu L, Wan Q, Pan A L, Deng H Q 2011 Phys. Status Solidi B 248 1442

    [21]

    Xiao M X, Yao T Z, Ao Z M, Wei P, Wang D H, Song H Y 2015 Phys. Chem. Chem. Phys. 17 8692

    [22]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 61 227102]

    [23]

    MaY D, Dai Y, Guo M, Niu C W, Yu L, Huang B B 2011 Nanoscale 3 2301

    [24]

    Dong L, Yadav S K, Ramprasad R, Alpay S P 2010 Appl. Phys. Lett. 96 202106

    [25]

    Delley B 1990 J. Chem. Phys. 92 508

    [26]

    Delley B 2000 J. Chem. Phys. 113 7756

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [28]

    Delley B 2002 Phys. Rev. B 66 155125

    [29]

    Koelling D D, Harmon B N 1977 J. Phys. C 10 3107

    [30]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [31]

    Li H M, Dai J, Li J, Zhang S, Zhou J, Zhang L J, Chu W S, Chen D L, Zhao H F, Yang J L, Wu Z Y 2010 J. Phys. Chem. C 114 11390

    [32]

    Zhou J, Wang Q, Sun Q, Jena P 2010 Phys. Rev. B 81 085442

    [33]

    Tang Q, Li Y F, Zhou Z, Chen Y S, Chen Z F 2010 ACS Appl. Mater. Inter. 2 2442

  • [1]

    Morkoc H, Strite S, Gao G B, Lin M E, Sverdlov B, Burns M 1994 J. Appl. Phys. 76 1363

    [2]

    Liu Y A, Zhuang Y Q, Du L, Su Y H 2013 Acta Phys. Sin. 62 140703 (in Chinese) [刘宇安, 庄奕琪, 杜磊, 苏亚慧 2013 62 140703]

    [3]

    Zhang D Y, Zheng X H, Li X F, Wu Y Y, Wang J F, Yang H 2012 Chin. Phys. Lett. 29 068801

    [4]

    Ma Y D, Dai Y, Guo M, Niu C W, Yu L, Huang B B 2011 Appl. Surf. Sci. 257 7845

    [5]

    Lopez-Bezanilla A, Ganesh P, Kent P R C, Sumpter B G 2014 Nano Research 7 63

    [6]

    Goldberger J, He R R, Zhang Y F, Lee S, Yan H Q, Choi H J, Yang P D 2003 Nature 422 599

    [7]

    Bae S Y, Seo H W, Park J, Yang H, Kim H, Kim S 2003 Appl. Phys. Lett. 82 4564

    [8]

    Xiang X, Cao C B, Huang F L, Lv R T, Zhu H S 2004 J. Cryst. Growth 263 25

    [9]

    Duan X F, Lieber C M 2000 J. Am. Chem. Soc. 122 188

    [10]

    Guo R H, Lu T P, Jia Z G, Shang L, Zhang H, Wang R, Zhai G M, Xu B S 2015 Acta Phys. Sin. 64 127305 (in Chinese) [郭瑞花, 卢太平, 贾志刚, 尚林, 张华, 王蓉, 翟光美, 许并社 2015 64 127305]

    [11]

    Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T, Ciraci S 2009 Phys. Rev. B 80 155453

    [12]

    Freeman C L, Claeyssens F, Allan N L, Harding J H 2006 Phys. Rev. Lett. 96 066102

    [13]

    Gao N, Zheng W T, Jiang Q 2012 Phys. Chem. Chem. Phys. 14 257

    [14]

    Chen X F, Lian J S, Jiang Q 2012 Phys. Rev. B 86 125437

    [15]

    Zhang W X, Li T, Gong S B, He C, Duan L 2015 Phys. Chem. Chem. Phys. 17 10919

    [16]

    Li S, Wu Y F, Liu W, Zhao Y H 2014 Chem. Phys. Lett. 609 161

    [17]

    Tang Q, Cui Y, Li Y F, Zhou Z, Chen Z F 2011 J. Phys. Chem. C 115 1724

    [18]

    Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y, Jena P 2009 Nano Lett. 9 3867

    [19]

    Dai Q Q, Zhu Y F, Jiang Q 2012 Phys. Chem. Chem. Phys. 14 1253

    [20]

    Xiao W Z, Wang L L, Xu L, Wan Q, Pan A L, Deng H Q 2011 Phys. Status Solidi B 248 1442

    [21]

    Xiao M X, Yao T Z, Ao Z M, Wei P, Wang D H, Song H Y 2015 Phys. Chem. Chem. Phys. 17 8692

    [22]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 61 227102]

    [23]

    MaY D, Dai Y, Guo M, Niu C W, Yu L, Huang B B 2011 Nanoscale 3 2301

    [24]

    Dong L, Yadav S K, Ramprasad R, Alpay S P 2010 Appl. Phys. Lett. 96 202106

    [25]

    Delley B 1990 J. Chem. Phys. 92 508

    [26]

    Delley B 2000 J. Chem. Phys. 113 7756

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [28]

    Delley B 2002 Phys. Rev. B 66 155125

    [29]

    Koelling D D, Harmon B N 1977 J. Phys. C 10 3107

    [30]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [31]

    Li H M, Dai J, Li J, Zhang S, Zhou J, Zhang L J, Chu W S, Chen D L, Zhao H F, Yang J L, Wu Z Y 2010 J. Phys. Chem. C 114 11390

    [32]

    Zhou J, Wang Q, Sun Q, Jena P 2010 Phys. Rev. B 81 085442

    [33]

    Tang Q, Li Y F, Zhou Z, Chen Y S, Chen Z F 2010 ACS Appl. Mater. Inter. 2 2442

  • [1] Bai Gang, Han Yu-Hang, Gao Cun-Fa. Phase transitions and electrocaloric effects of (111)-oriented K0.5Na0.5NbO3 epitaxial films: effect of external stress and misfit strains. Acta Physica Sinica, 2022, 71(9): 097701. doi: 10.7498/aps.71.20220234
    [2] Wang Na, Xu Hui-Fang, Yang Qiu-Yun, Zhang Mao-Lian, Lin Zi-Jing. First-principles study of strain-tunable charge carrier transport properties and optical properties of CrI3 monolayer. Acta Physica Sinica, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [3] Pan Feng-Chun, Lin Xue-Ling, Wang Xu-Ming. First-principles study of strain effect on magnetic and optical properties in (Ga, Mo)Sb. Acta Physica Sinica, 2022, 71(9): 096103. doi: 10.7498/aps.71.20212316
    [4] Fan Qin-Hua, Zu Yan-Qing, Li Lu, Dai Jin-Fei, Wu Zhao-Xin. Research progress of stability of luminous lead halide perovskite nanocrystals. Acta Physica Sinica, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [5] Wang Xin, Li Hua, Dong Zheng-Chao, Zhong Chong-Gui. Magnetism and electronic properties of LiFeAs superconducting thin filma under two-dimensional strains effect. Acta Physica Sinica, 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [6] Xuan Sheng-Jie, Liu Yan. Control of skyrmion movement in nanotrack by using periodic strain. Acta Physica Sinica, 2018, 67(13): 137503. doi: 10.7498/aps.67.20180031
    [7] Yuan Jun-Hui, Xie Qing-Xing, Yu Nian-Nian, Wang Jia-Fu. Effects of surface regulation on monolayers SbAs and BiSb. Acta Physica Sinica, 2016, 65(21): 217101. doi: 10.7498/aps.65.217101
    [8] Liu Feng-Bin, Chen Wen-Bin, Cui Yan, Qu Min, Cao Lei-Gang, Yang Yue. A first principles study on the active adsorbates on the hydrogenated diamond surface. Acta Physica Sinica, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [9] Wang Jiang-Jing, Shao Rui-Wen, Deng Qing-Song, Zheng Kun. Study on electrical transport properties of strained Si nanowires by in situ transmission electron microscope. Acta Physica Sinica, 2014, 63(11): 117303. doi: 10.7498/aps.63.117303
    [10] Xie Jian-Feng, Cao Jue-Xian. Modulation of the band structure of layered BN film with stain. Acta Physica Sinica, 2013, 62(1): 017302. doi: 10.7498/aps.62.017302
    [11] Wang Li-Shi, Xu Jian-Ping, Shi Shao-Bo, Zhang Xiao-Song, Ren Zhi-Rui, Ge Lin, Li Lan. Influence of ZnS modification on the I-V performance of ZnO nanorods:P3HT composite films. Acta Physica Sinica, 2013, 62(19): 196103. doi: 10.7498/aps.62.196103
    [12] Huang Shi-Hao, Li Cheng, Chen Cheng-Zhao, Zheng Yuan-Yu, Lai Hong-Kai, Chen Song-Yan. The optical property of tensile-strained n-type doped Ge. Acta Physica Sinica, 2012, 61(3): 036202. doi: 10.7498/aps.61.036202
    [13] Zheng Li-Si, Feng Miao, Zhan Hong-Bing. Effects of surface modification on nonlinear optical performance of gold nanoparticles. Acta Physica Sinica, 2012, 61(5): 054212. doi: 10.7498/aps.61.054212
    [14] Gu Fang, Zhang Jia-Hong, Yang Li-Juan, Gu Bin. Molecular dynamics simulation of resonance properties of strain graphene nanoribbons. Acta Physica Sinica, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [15] Liu Yu-Rong, Wang Zhi-Xin, Yu Jia-Le, Xu Hai-Hong. High mobility polymer thin-film transistors. Acta Physica Sinica, 2009, 58(12): 8566-8570. doi: 10.7498/aps.58.8566
    [16] Shi Li-Bin, Zheng Yan, Ren Jun-Yuan, Li Ming-Biao, Zhang Guo-Hua. Strain effect on microwave surface resistance of YBa2Cu3O7-δ/LaAlO3 and Tl2Ba2CaCu2O8/LaAlO3 high temperature superconducting thin films. Acta Physica Sinica, 2008, 57(2): 1183-1189. doi: 10.7498/aps.57.1183
    [17] Li He, Li Xue-Dong, Li Juan, Wu Chun-Ya, Meng Zhi-Guo, Xiong Shao-Zhen, Zhang Li-Zhu. Investigation on the improvement of the stability and uniformity of solution-based metal-induced crystallization poly-Si using surface-embellishment. Acta Physica Sinica, 2008, 57(4): 2476-2480. doi: 10.7498/aps.57.2476
    [18] Huang Jin-Hua, Zhang Kun, Pan Nan, Gao Zhi-Wei, Wang Xiao-Ping. Enhancing ultraviolet photoresponse of ZnO nanowire device by surface functionalization. Acta Physica Sinica, 2008, 57(12): 7855-7859. doi: 10.7498/aps.57.7855
    [19] Zhang Hong-Di, An Yu-Kai, Mai Zhen-Hong, Gao Ju, Hu Feng-Xia, Wang Yong, Jia Quan-Jie. Thickness effect on structure and magnetic properties of La0.8Ca0.2MnO3/SrTiO3 films. Acta Physica Sinica, 2007, 56(9): 5347-5352. doi: 10.7498/aps.56.5347
    [20] Zhang Kai-Xiao, Chen Dun-Jun, Shen Bo, Tao Ya-Qi, Wu Xiao-Shan, Xu Jin, Zhang Rong, Zheng You-Dou. The effects of passivation and temperature on the barrier strain of Al0.22Ga0.78N/GaN heterostructures. Acta Physica Sinica, 2006, 55(3): 1402-1406. doi: 10.7498/aps.55.1402
Metrics
  • Abstract views:  6318
  • PDF Downloads:  218
  • Cited By: 0
Publishing process
  • Received Date:  25 September 2015
  • Accepted Date:  25 October 2015
  • Published Online:  20 January 2016

/

返回文章
返回
Baidu
map