-
In this paper, first-principles calculations based on the density functional theory, are performed to investigate the effects of strain field on the electronic and magnetic properties of two-bilayer gallium nitride (GaN) nanosheets. The two-bilayer GaN nanosheet without surface modification forms a planar graphitic structure, whereas that with full hydrogenation for the surface Ga and N atoms adopts the energetically more favorable wurtzite structure. Surface hydrogenation is proven to be an effective way to induce a transition from indirect to direct band gap. The bare and fully-hydrogenated GaN nanosheets are nonmagnetic semiconductors. When only one-side Ga or N atoms on the surface are hydrogenated, the semihydrogenated two-bilayer GaN nanosheets will preserve their initial wurtzite structures. The two-bilayer GaN nanosheet with one-side N atoms hydrogenated transforms into a nonmagnetic metal, while that with one-side Ga atoms hydrogenated (H-GaN) is a ferromagnetic semiconductor with band gaps of 3.99 and 0.06 eV in the spin-up and spin-down states, respectively. We find that the two-bilayer H-GaN nanosheets will maintain ferromagnetic states under a strain field and the band gaps Eg in spin-up and spin-down states are a function of strain . As the tensile strain is +6%, the band gap in spin-up state reduces to 2.71 eV, and that in spin-down state increases to 0.41 eV for the two-bilayer H-GaN nanosheets. Under the compressive strain field, the two-bilayer H-GaN nanosheets will show a transition from semiconducting to half-metallici state under compression of -1%, where the spin-up state remains as a band gap insulator with band gap of 4.16 eV and the spin-down state is metallic. Then the two-bilayer H-GaN nanosheets will turn into fully-metallic properties with bands crossing the Fermi level in the spin-up and spin-down states under a compressive strain of -6%. Moreover, the value of binding energy Eb for the two-bilayer H-GaN nanosheet decreases (increases) monotonically with increasing compressive (tensile) strain. It is found that although hydrogenation on one-side Ga atoms of the two-bilayer H-GaN nanosheets is preferred to be under compressive strain, the two-bilayer H-GaN nanosheets are still the energetically favorable structures. The physical mechanisms of strain field tuning band gaps in the spin-up and spin-down states for the two-bilayer H-GaN nanosheets are mainly induced by the combined effects of through-bond and p-p direct interactions. Our results demonstrate that the predicted diverse and tunable electronic and magnetic properties may lead to the potential application of GaN nanosheets in novel electronic and spintronic nanodevices.
[1] Morkoc H, Strite S, Gao G B, Lin M E, Sverdlov B, Burns M 1994 J. Appl. Phys. 76 1363
[2] Liu Y A, Zhuang Y Q, Du L, Su Y H 2013 Acta Phys. Sin. 62 140703 (in Chinese) [刘宇安, 庄奕琪, 杜磊, 苏亚慧 2013 62 140703]
[3] Zhang D Y, Zheng X H, Li X F, Wu Y Y, Wang J F, Yang H 2012 Chin. Phys. Lett. 29 068801
[4] Ma Y D, Dai Y, Guo M, Niu C W, Yu L, Huang B B 2011 Appl. Surf. Sci. 257 7845
[5] Lopez-Bezanilla A, Ganesh P, Kent P R C, Sumpter B G 2014 Nano Research 7 63
[6] Goldberger J, He R R, Zhang Y F, Lee S, Yan H Q, Choi H J, Yang P D 2003 Nature 422 599
[7] Bae S Y, Seo H W, Park J, Yang H, Kim H, Kim S 2003 Appl. Phys. Lett. 82 4564
[8] Xiang X, Cao C B, Huang F L, Lv R T, Zhu H S 2004 J. Cryst. Growth 263 25
[9] Duan X F, Lieber C M 2000 J. Am. Chem. Soc. 122 188
[10] Guo R H, Lu T P, Jia Z G, Shang L, Zhang H, Wang R, Zhai G M, Xu B S 2015 Acta Phys. Sin. 64 127305 (in Chinese) [郭瑞花, 卢太平, 贾志刚, 尚林, 张华, 王蓉, 翟光美, 许并社 2015 64 127305]
[11] Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T, Ciraci S 2009 Phys. Rev. B 80 155453
[12] Freeman C L, Claeyssens F, Allan N L, Harding J H 2006 Phys. Rev. Lett. 96 066102
[13] Gao N, Zheng W T, Jiang Q 2012 Phys. Chem. Chem. Phys. 14 257
[14] Chen X F, Lian J S, Jiang Q 2012 Phys. Rev. B 86 125437
[15] Zhang W X, Li T, Gong S B, He C, Duan L 2015 Phys. Chem. Chem. Phys. 17 10919
[16] Li S, Wu Y F, Liu W, Zhao Y H 2014 Chem. Phys. Lett. 609 161
[17] Tang Q, Cui Y, Li Y F, Zhou Z, Chen Z F 2011 J. Phys. Chem. C 115 1724
[18] Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y, Jena P 2009 Nano Lett. 9 3867
[19] Dai Q Q, Zhu Y F, Jiang Q 2012 Phys. Chem. Chem. Phys. 14 1253
[20] Xiao W Z, Wang L L, Xu L, Wan Q, Pan A L, Deng H Q 2011 Phys. Status Solidi B 248 1442
[21] Xiao M X, Yao T Z, Ao Z M, Wei P, Wang D H, Song H Y 2015 Phys. Chem. Chem. Phys. 17 8692
[22] Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 61 227102]
[23] MaY D, Dai Y, Guo M, Niu C W, Yu L, Huang B B 2011 Nanoscale 3 2301
[24] Dong L, Yadav S K, Ramprasad R, Alpay S P 2010 Appl. Phys. Lett. 96 202106
[25] Delley B 1990 J. Chem. Phys. 92 508
[26] Delley B 2000 J. Chem. Phys. 113 7756
[27] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Delley B 2002 Phys. Rev. B 66 155125
[29] Koelling D D, Harmon B N 1977 J. Phys. C 10 3107
[30] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[31] Li H M, Dai J, Li J, Zhang S, Zhou J, Zhang L J, Chu W S, Chen D L, Zhao H F, Yang J L, Wu Z Y 2010 J. Phys. Chem. C 114 11390
[32] Zhou J, Wang Q, Sun Q, Jena P 2010 Phys. Rev. B 81 085442
[33] Tang Q, Li Y F, Zhou Z, Chen Y S, Chen Z F 2010 ACS Appl. Mater. Inter. 2 2442
-
[1] Morkoc H, Strite S, Gao G B, Lin M E, Sverdlov B, Burns M 1994 J. Appl. Phys. 76 1363
[2] Liu Y A, Zhuang Y Q, Du L, Su Y H 2013 Acta Phys. Sin. 62 140703 (in Chinese) [刘宇安, 庄奕琪, 杜磊, 苏亚慧 2013 62 140703]
[3] Zhang D Y, Zheng X H, Li X F, Wu Y Y, Wang J F, Yang H 2012 Chin. Phys. Lett. 29 068801
[4] Ma Y D, Dai Y, Guo M, Niu C W, Yu L, Huang B B 2011 Appl. Surf. Sci. 257 7845
[5] Lopez-Bezanilla A, Ganesh P, Kent P R C, Sumpter B G 2014 Nano Research 7 63
[6] Goldberger J, He R R, Zhang Y F, Lee S, Yan H Q, Choi H J, Yang P D 2003 Nature 422 599
[7] Bae S Y, Seo H W, Park J, Yang H, Kim H, Kim S 2003 Appl. Phys. Lett. 82 4564
[8] Xiang X, Cao C B, Huang F L, Lv R T, Zhu H S 2004 J. Cryst. Growth 263 25
[9] Duan X F, Lieber C M 2000 J. Am. Chem. Soc. 122 188
[10] Guo R H, Lu T P, Jia Z G, Shang L, Zhang H, Wang R, Zhai G M, Xu B S 2015 Acta Phys. Sin. 64 127305 (in Chinese) [郭瑞花, 卢太平, 贾志刚, 尚林, 张华, 王蓉, 翟光美, 许并社 2015 64 127305]
[11] Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T, Ciraci S 2009 Phys. Rev. B 80 155453
[12] Freeman C L, Claeyssens F, Allan N L, Harding J H 2006 Phys. Rev. Lett. 96 066102
[13] Gao N, Zheng W T, Jiang Q 2012 Phys. Chem. Chem. Phys. 14 257
[14] Chen X F, Lian J S, Jiang Q 2012 Phys. Rev. B 86 125437
[15] Zhang W X, Li T, Gong S B, He C, Duan L 2015 Phys. Chem. Chem. Phys. 17 10919
[16] Li S, Wu Y F, Liu W, Zhao Y H 2014 Chem. Phys. Lett. 609 161
[17] Tang Q, Cui Y, Li Y F, Zhou Z, Chen Z F 2011 J. Phys. Chem. C 115 1724
[18] Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y, Jena P 2009 Nano Lett. 9 3867
[19] Dai Q Q, Zhu Y F, Jiang Q 2012 Phys. Chem. Chem. Phys. 14 1253
[20] Xiao W Z, Wang L L, Xu L, Wan Q, Pan A L, Deng H Q 2011 Phys. Status Solidi B 248 1442
[21] Xiao M X, Yao T Z, Ao Z M, Wei P, Wang D H, Song H Y 2015 Phys. Chem. Chem. Phys. 17 8692
[22] Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 61 227102]
[23] MaY D, Dai Y, Guo M, Niu C W, Yu L, Huang B B 2011 Nanoscale 3 2301
[24] Dong L, Yadav S K, Ramprasad R, Alpay S P 2010 Appl. Phys. Lett. 96 202106
[25] Delley B 1990 J. Chem. Phys. 92 508
[26] Delley B 2000 J. Chem. Phys. 113 7756
[27] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Delley B 2002 Phys. Rev. B 66 155125
[29] Koelling D D, Harmon B N 1977 J. Phys. C 10 3107
[30] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[31] Li H M, Dai J, Li J, Zhang S, Zhou J, Zhang L J, Chu W S, Chen D L, Zhao H F, Yang J L, Wu Z Y 2010 J. Phys. Chem. C 114 11390
[32] Zhou J, Wang Q, Sun Q, Jena P 2010 Phys. Rev. B 81 085442
[33] Tang Q, Li Y F, Zhou Z, Chen Y S, Chen Z F 2010 ACS Appl. Mater. Inter. 2 2442
Catalog
Metrics
- Abstract views: 6318
- PDF Downloads: 218
- Cited By: 0