搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应变对(Ga, Mo)Sb磁学和光学性质影响的理论研究

潘凤春 林雪玲 王旭明

引用本文:
Citation:

应变对(Ga, Mo)Sb磁学和光学性质影响的理论研究

潘凤春, 林雪玲, 王旭明

First-principles study of strain effect on magnetic and optical properties in (Ga, Mo)Sb

Pan Feng-Chun, Lin Xue-Ling, Wang Xu-Ming
PDF
HTML
导出引用
  • 近年来, 作为一种自旋电子学领域的关键材料, 具有高温本征铁磁性的稀磁半导体受到了广泛的关注. 为探索能够提高本征铁磁性居里温度(Curie temperature, TC)的方法, 本文运用第一性原理LDA+U方法研究了应变对Mo掺杂GaSb的电子结构、磁学及光学性质的影响. 研究结果表明: –6%—2.5%应变范围下GaSb半导体材料具有稳定的力学性能, 压应变下GaSb材料的可塑性、韧性增强, 有利于GaSb半导体材料力学性能的提升; 应变对Mo替代Ga缺陷(MoGa)的电子结构有重要的影响, –3%至–1.2%应变范围下MoGa处于低自旋态(low spin state, LSS), 具有1${\mu _{{\rm{B}}}}$的局域磁矩, –1.1%—2%应变范围下MoGa处于高自旋态(high spin state, HSS), 具有3${\mu _{{\rm{B}}}}$的磁矩; 不管是LSS还是HSS, MoGa产生局域磁矩之间的耦合都是铁磁耦合, 但铁磁耦合的强度和物理机制不同, 适当的压应变可有效提高铁磁耦合强度, 这有利于实现高TC的GaSb基磁性半导体; Mo可极大提高GaSb半导体材料的电极化能力, 这有利于光生电子-空穴对的形成和分离, 提高掺杂体系对长波光子的光电转化效率; Mo引入的杂质能级使电子的带间跃迁对所需要吸收光子的能量变小, 掺杂体系光学吸收谱的吸收边发生了红移, 拉应变可进一步提升(Ga,Mo)Sb体系在红外光区的光学性能.
    In recent decades, as a kind of critical material in spintronics field, the diluted magnetic semiconductor with high temperature and intrinsic ferromagnetism has attracted extensive attention. In order to explore the approach to enhancing Curie temperature (TC), the LDA+U method of the first-principles calculation is adopted to study the effect of strain on electronic structure, magnetic and optical properties in Mo doped GaSb system. The results indicate that the structure of GaSb is stable with strain in a range of –6%—2.5%. Plasticity and toughness of GaSb increase under compressive strains, which is conducive to the improvement of the mechanical properties. The strain affects the electronic structure of MoGa greatly. In a range from –3% to –1.2%, MoGa is in the low spin state (LSS) with a 1${\mu _{{\rm{B}}}}$local magnetic moment, while in a range of –1.1%—2%, MoGa is in high spin state (HSS) with a 3${\mu _{{\rm{B}}}}$moment. The magnetic interactions between MoGa and MoGa are all ferromagnetic for LSS and so is the case for HSS, although they are different in coupling intensity and mechanism. In particular, appropriate compressive strains can improve the strength of ferromagnetic coupling effectively and are favorable for the preparation of the GaSb-based diluted magnetic semiconductors with high Curie temperatures and inherent ferromagnetism. Moreover, we find that Mo can greatly improve the polarization capability of GaSb and play a vital role in forming and separating the electron-hole pairs, and thus further improving the photoelectric conversion capability for long wave photons. The energy required to absorb photons for inter-band transition of electrons decreases because of the impurity levels induced by Mo, which leads the absorption edge to be red-shifted. The optical properties of (Ga,Mo)Sb in infrared region are further enhanced by the tensile strain.
      通信作者: 王旭明, wang_xm@126.com
    • 基金项目: 国家自然科学基金(批准号: 11764032, 11665018)资助的课题.
      Corresponding author: Wang Xu-Ming, wang_xm@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11764032, 11665018).
    [1]

    Ohno H 1998 Science 281 951Google Scholar

    [2]

    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019Google Scholar

    [3]

    Dietl T 2010 Nat. Mater. 9 965Google Scholar

    [4]

    Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Modern Phys. 82 1633Google Scholar

    [5]

    Dietl T, Ohno H 2014 Rev. Mod. Phys. 86 187Google Scholar

    [6]

    王少霞, 赵旭才, 潘多桥, 庞国旺, 刘晨曦, 史蕾倩, 刘桂安, 雷博程, 黄以能, 张丽丽 2020 69 197101Google Scholar

    Wang S X, Zhao X C, Pan D Q, Pang G W, Liu C X, Shi L Q, Liu G A, Lei B C, Huang Y N, Zhang L L 2020 Acta Phys. Sin. 69 197101Google Scholar

    [7]

    姚仲瑜, 孙丽, 潘孟美, 孙书娟, 刘汉军 2018 67 217501Google Scholar

    Yao Z Y, Sun L, Pan M M, Sun S J, Liu H J 2018 Acta Phys. Sin. 67 217501Google Scholar

    [8]

    You J Y, Gu B, Maekawa S, Su Gang 2020 Phys. Rev. B 102 094432Google Scholar

    [9]

    Takeda T, Suzuki M, Anh L D, Tu N, Schmitt T, Yoshida S, Sakano M, Ishizaka K, Takeda Y, Fijimori S 2020 Phys. Rev. B 101 155142Google Scholar

    [10]

    Takeda T, Sakamoto S, Araki K, Fujisawa Y, Anh L, Tu N, Takeda Y, Fujimori S, Fujimori A, Tanaka M 2020 Phys. Rev. B 102 245203Google Scholar

    [11]

    Sena N, Dussan A, Mesa F, Castao E, Gonzalez-Hernandez R 2016 J. Appl. Phys. 120 051704Google Scholar

    [12]

    Kudrnovsky J, Turek I, Drchal V, Maca F, Weinberger P, Bruno P 2004 Phys. Rev. B 69 115208Google Scholar

    [13]

    Da Pieve F, Di Matteo S, Rangel T, Giantomassi M, Lamoen D, Rignanese G M, Gonze X 2013 Phys. Rev. Lett. 110 136402Google Scholar

    [14]

    Chou H, Lin C P, Huang J C A, Hsu H S 2008 Phys. Rev. B 77 245210Google Scholar

    [15]

    Sato K, Dederichs P H, Katayama-Yoshida H, Kudrnovsky J 2004 J. Phys.: Condens. Matter 16 S5491Google Scholar

    [16]

    Tu N T, Hai P N, Anh L D, Tanaka M 2015 Phys. Rev. B 92 144403Google Scholar

    [17]

    Tu N T, Hai P N, Le D A, Tanaka M 2014 Appl. Phys. Lett. 105 132402Google Scholar

    [18]

    Tu N T, Hai P N, Le D A, Tanaka M 2016 Appl. Phys. Lett. 108 192401Google Scholar

    [19]

    Kondrin M V, Gizatullin V R, Popova S V, Lyapin A G, Brazhkin V V, Ivanov V Y, Pronin A A, Lebed Y B, Sadykov R A 2011 J. Phys. Condens. Matter 23 446001Google Scholar

    [20]

    Ganesan K, Pendyala N B, Koteswara Rao K S R, Venkataraman V, Bhat H L 2010 Semicond. Sci. Technol. 25 105003Google Scholar

    [21]

    Boishin G I, Sullivan J M, Whitman L J 2005 Phys. Rev. B 71 193307Google Scholar

    [22]

    Abe E, Matsukura F, Yasuda H, Ohno Y, Ohno H 2000 Physica E 7 981Google Scholar

    [23]

    Medvedeva J E 2006 Phys. Rev. Lett. 97 086401Google Scholar

    [24]

    Park C Y, Yoon S G, Jo Y H, Shin S C 2009 Appl. Phys. Lett. 95 122502Google Scholar

    [25]

    Park C Y, You C Y, Jeon K R, Shin S C 2012 Appl. Phys. Lett. 100 222409Google Scholar

    [26]

    Egbo K O, Adesina A E, Ezeh C V, Liu C P, Yu K M 2021 Phys. Rev. Mater. 5 094603Google Scholar

    [27]

    Lu W J, Sun Y P, Zhao B C, Zhu X B, Song W H 2006 Phys. Rev. B 73 174425Google Scholar

    [28]

    Dwivedi G D, Tseng K F, Chan C L, Shahi P, Louremban J, Chatterjee B, Ghosh A K, Yang H D, Chatterjee S 2010 Phys. Rev. B 82 134428Google Scholar

    [29]

    Linpeng X, Karin T, Durnev M V, Glazov M M, Schott R, Wieck A D, Ludwig A, Fu K M C 2021 Phys. Rev. B 103 115412Google Scholar

    [30]

    Patel K, Prosandeev S, Xu B, Xu C S, Bellaiche L 2021 Phys. Rev. B 103 094103Google Scholar

    [31]

    Zhong H X, Xiong W Q, Lv P F, Yu J, Yuan S J 2021 Phys. Rev. B 103 085124Google Scholar

    [32]

    Goel S, Anh L D, Ohya S, Tanaka M 2019 Phys. Rev. B 99 014431Google Scholar

    [33]

    Rawat K, Fong D D, Aidhy D S 2021 J. Appl. Phys. 129 095301Google Scholar

    [34]

    Breev I D, Poshakinskiy A V, Yakovleva V V, et al. 2021 Appl. Phys. Lett. 118 084003Google Scholar

    [35]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [36]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244Google Scholar

    [37]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717Google Scholar

    [38]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [39]

    Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748Google Scholar

    [40]

    Straumanis M E, Kim C D 1965 J. Electrochem. Soc. 112 112Google Scholar

    [41]

    Straumanis M E, Kim C D 1965 J. Appl. Phys. 36 3822Google Scholar

    [42]

    Jakowetz W, Ruhle W, Breuninger, Pilkuhn M 1972 Phys. Status Solidi (A) 12 169Google Scholar

    [43]

    Van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851Google Scholar

    [44]

    Zota C B, Kim S H, Yokoyama M, Takenaka M, Takagi S 2012 Appl. Phys. Express 5 071201Google Scholar

    [45]

    Yokoyama M, Nishi K, Kim S, Yokoyama H, Takenaka M, Takagi S 2014 Appl. Phys. Lett. 104 093509Google Scholar

    [46]

    Watt J P 1980 J. Appl. Phys. 51 1520Google Scholar

    [47]

    Reuss A 1929 Z. Ang. Math. Mech. 9 49Google Scholar

    [48]

    Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J 2007 Phys. Rev. B 76 054115Google Scholar

    [49]

    Hill B R 1952 Proc. Phys. Soc. A65 349

    [50]

    Li K Y, Ding Z S, Xue D F 2011 Phys. Status Solidi (B) 248 1227Google Scholar

    [51]

    Hao Y L, Li S J, Sun S Y, Zheng C Y, Yang R 2007 Acta Biomater. 3 277Google Scholar

    [52]

    Pugh S F 2009 Philos. Mag. 45 823Google Scholar

    [53]

    Ling T, Yan D Y, Wang H, Jiao Y, Hu Z P, Zheng Y, Zheng L R, Mao J, Liu H, Du X W, Jaroniec M, Qiao S Z 2017 Nat. Commun. 8 1509Google Scholar

    [54]

    Petrie J R, Jeen H, Barron S C, Meyer T L, Lee H N 2016 J. Am. Chem. Soc. 138 7252Google Scholar

    [55]

    Wolfschmidt H, Bussar R, Stimming U 2008 J. Phys. Condens. Matter 20 374127Google Scholar

    [56]

    Tan Y, Liu P, Chen L, Cong W, Ito Y, Han J, Guo X, Tang Z, Fujita T, Hirata A, Chen M 2014 Adv. Mater. 26 8023Google Scholar

    [57]

    王志伟, 郝永芹, 李洋, 谢检来, 王霞, 晏长岭, 魏志鹏, 马晓辉 2018 发光学报 39 935Google Scholar

    Wang Z W, Hao Y Q, Li Y, Xie J L, Wang X, Yan C L, Wei Z P, Ma X H 2018 Chin. J. Lumi. 39 935Google Scholar

    [58]

    Zhang P, Kim Y H, Wei S H 2019 Phys. Rev. Appl. 11 054058Google Scholar

    [59]

    Pan F C, Lin X L, Wang X M 2021 Chin. Phys. B 30 096105Google Scholar

    [60]

    Dietl T, Ohno H 2001 Physica E Low Dimens. Syst. Nanostruct. 9 185Google Scholar

    [61]

    Matsukura F, Ohno H, Dietl T 2002 Handbook of Magnetic Materials 14 1Google Scholar

    [62]

    Yakunin A M, Silov A Y, Koenraad P M, Wolter J H, Roy W V, Boeck J D 2003 Superlattices Microst. 34 539Google Scholar

    [63]

    Khvostikov V P, Khvostikova O A, Gazaryan P Y, et al. 2007 J. Sol. Energy Engineer. 129 291Google Scholar

    [64]

    Kim J M, Dutta P S, Brown E, Borrego J M, Greiff P 2013 Semicond. Sci. Technol. 28 065002Google Scholar

    [65]

    Liu Z, Qiu K 2017 Energy 141 892Google Scholar

    [66]

    Lou Y Y, Zhang X L, Huang A B, Wang Y 2017 Sol. Energy Mater. Sol. Cells 172 124Google Scholar

    [67]

    Li M Z, Chen X L, Li H L, et al. 2018 Chin. Phys. B 27 078101Google Scholar

    [68]

    黄昆 1988 固体物理学 (北京: 高等教育出版社) 第437−452页

    Huang K 1988 Solid State Physics (Beijing: Higher Education Press) pp437−452 (in Chinese)

    [69]

    潘凤春, 林雪玲, 曹志杰, 李小伏 2019 68 184202Google Scholar

    Pan F C, Lin X L, Cao Z J, Li X F 2019 Acta Phys. Sin. 68 184202Google Scholar

    [70]

    Uspenskii Y A, Kulatov E T 2009 J. Magn. Magn. Mater. 321 931Google Scholar

    [71]

    杨卫霞, 张贺翔, 潘凤春, 林雪玲 2021 人工晶体学报 50 2019Google Scholar

    Yang W X, Zhang H X, Pan F C, Lin X L 2021 J. Synth. Cryst. 50 2019Google Scholar

  • 图 1  GaSb超晶胞结构, 其中大的绿色球代表Ga原子, 小的紫色球代表Sb原子

    Fig. 1.  Structure of GaSb supercell, where the big green balls and small purple balls denote Ga and Sb atoms, respectively.

    图 2  力学稳定性判据

    Fig. 2.  Criteria of mechanical stability.

    图 3  (Ga, Mo)Sb体系在HSS和LSS下的态密度图 (a) 零应变下的TDOS; (b)零应变下Mo-4d电子的PDOS; (c) –1.2%应变下的TDOS; (d) –1.2%应变下Mo-4d电子的PDOS

    Fig. 3.  Density of states (DOS) of (Ga, Mo)Sb in HSS and LSS: (a) TDOS and (b) PDOS of Mo-4d without strain; (c) the TDOS and (d) the PDOS of Mo-4d under –1.2% strain.

    图 4  (a) 应变下, (Ga, Mo)Sb体系中掺杂Mo原子和近邻Sb原子的磁矩; (b) 应变下, S(12)和S(23)结构的ΔE

    Fig. 4.  (a) Magnetic moments contributed by Mo and neighbor Sb (N Sb) under strains and (b) ΔE of S(12) and S(23) under strains, respectively.

    图 5  等值面为0.01 e/Å3的空间自旋密度图 (a) HSS下MoGa; (b) LSS下MoGa; (c) HSS下S(12)结构FM耦合; (d) LSS下S(23)结构FM耦合

    Fig. 5.  The spatial spin density for (a) MoGa under HSS, (b) MoGa under LSS, (c) FM coupling of S(12) under HSS, (d) FM coupling of S(23) under LSS, respectively. The isovalue is set to 0.01 e/Å3.

    图 6  d电子轨道四面体晶场分裂示意图

    Fig. 6.  Diagram of Mo-4d orbital splitting under tetrahedral crystal field.

    图 7  (Ga, Mo)Sb体系的能带图 (a)零应变下HSS; (b) –1.2%应变下LSS. 黑色实线表示自旋向上的能带, 红色虚线表示自旋向下的能带. 在能量为0处的水平蓝色虚线表示费米能级

    Fig. 7.  Band structures of (Ga, Mo)Sb in (a) HSS without strain and (b) LSS under –1.2% strain. Black solid lines and red dotted lines denote spin-up and spin-down bands, respectively. The horizontal blue dotted lines located at 0 energy are Fermi levels.

    图 8  (a) 应变下, GaSb和(Ga, Mo)Sb的光学吸收谱; (b) 应变下, GaSb和(Ga, Mo)Sb的复介电函数, 实线代表实部, 虚线代表虚部

    Fig. 8.  (a) Absorption spectra and (b) complex dielectric function of GaSb and (Ga, Mo)Sb under strains. In panel (b) solid and dotted lines denote real and imaginary parts, respectively.

    表 1  应变下GaSb的体积模量B、剪切模量G、泊松比$\gamma $B/G

    Table 1.  Bulk modulus B, shear modulus G, Poisson ratio $\gamma $ and B/G under strains.

    Strain/%B/GPaG/GPa$\gamma $B/G
    –6148.2137.670.383.93
    –5129.6643.080.353.01
    –3.7109.9343.850.322.51
    –290.0343.300.292.08
    068.7747.210.221.46
    0.568.7347.170.221.47
    164.2645.470.211.48
    1.561.3540.380.201.52
    255.4938.020.201.53
    下载: 导出CSV
    Baidu
  • [1]

    Ohno H 1998 Science 281 951Google Scholar

    [2]

    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019Google Scholar

    [3]

    Dietl T 2010 Nat. Mater. 9 965Google Scholar

    [4]

    Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Modern Phys. 82 1633Google Scholar

    [5]

    Dietl T, Ohno H 2014 Rev. Mod. Phys. 86 187Google Scholar

    [6]

    王少霞, 赵旭才, 潘多桥, 庞国旺, 刘晨曦, 史蕾倩, 刘桂安, 雷博程, 黄以能, 张丽丽 2020 69 197101Google Scholar

    Wang S X, Zhao X C, Pan D Q, Pang G W, Liu C X, Shi L Q, Liu G A, Lei B C, Huang Y N, Zhang L L 2020 Acta Phys. Sin. 69 197101Google Scholar

    [7]

    姚仲瑜, 孙丽, 潘孟美, 孙书娟, 刘汉军 2018 67 217501Google Scholar

    Yao Z Y, Sun L, Pan M M, Sun S J, Liu H J 2018 Acta Phys. Sin. 67 217501Google Scholar

    [8]

    You J Y, Gu B, Maekawa S, Su Gang 2020 Phys. Rev. B 102 094432Google Scholar

    [9]

    Takeda T, Suzuki M, Anh L D, Tu N, Schmitt T, Yoshida S, Sakano M, Ishizaka K, Takeda Y, Fijimori S 2020 Phys. Rev. B 101 155142Google Scholar

    [10]

    Takeda T, Sakamoto S, Araki K, Fujisawa Y, Anh L, Tu N, Takeda Y, Fujimori S, Fujimori A, Tanaka M 2020 Phys. Rev. B 102 245203Google Scholar

    [11]

    Sena N, Dussan A, Mesa F, Castao E, Gonzalez-Hernandez R 2016 J. Appl. Phys. 120 051704Google Scholar

    [12]

    Kudrnovsky J, Turek I, Drchal V, Maca F, Weinberger P, Bruno P 2004 Phys. Rev. B 69 115208Google Scholar

    [13]

    Da Pieve F, Di Matteo S, Rangel T, Giantomassi M, Lamoen D, Rignanese G M, Gonze X 2013 Phys. Rev. Lett. 110 136402Google Scholar

    [14]

    Chou H, Lin C P, Huang J C A, Hsu H S 2008 Phys. Rev. B 77 245210Google Scholar

    [15]

    Sato K, Dederichs P H, Katayama-Yoshida H, Kudrnovsky J 2004 J. Phys.: Condens. Matter 16 S5491Google Scholar

    [16]

    Tu N T, Hai P N, Anh L D, Tanaka M 2015 Phys. Rev. B 92 144403Google Scholar

    [17]

    Tu N T, Hai P N, Le D A, Tanaka M 2014 Appl. Phys. Lett. 105 132402Google Scholar

    [18]

    Tu N T, Hai P N, Le D A, Tanaka M 2016 Appl. Phys. Lett. 108 192401Google Scholar

    [19]

    Kondrin M V, Gizatullin V R, Popova S V, Lyapin A G, Brazhkin V V, Ivanov V Y, Pronin A A, Lebed Y B, Sadykov R A 2011 J. Phys. Condens. Matter 23 446001Google Scholar

    [20]

    Ganesan K, Pendyala N B, Koteswara Rao K S R, Venkataraman V, Bhat H L 2010 Semicond. Sci. Technol. 25 105003Google Scholar

    [21]

    Boishin G I, Sullivan J M, Whitman L J 2005 Phys. Rev. B 71 193307Google Scholar

    [22]

    Abe E, Matsukura F, Yasuda H, Ohno Y, Ohno H 2000 Physica E 7 981Google Scholar

    [23]

    Medvedeva J E 2006 Phys. Rev. Lett. 97 086401Google Scholar

    [24]

    Park C Y, Yoon S G, Jo Y H, Shin S C 2009 Appl. Phys. Lett. 95 122502Google Scholar

    [25]

    Park C Y, You C Y, Jeon K R, Shin S C 2012 Appl. Phys. Lett. 100 222409Google Scholar

    [26]

    Egbo K O, Adesina A E, Ezeh C V, Liu C P, Yu K M 2021 Phys. Rev. Mater. 5 094603Google Scholar

    [27]

    Lu W J, Sun Y P, Zhao B C, Zhu X B, Song W H 2006 Phys. Rev. B 73 174425Google Scholar

    [28]

    Dwivedi G D, Tseng K F, Chan C L, Shahi P, Louremban J, Chatterjee B, Ghosh A K, Yang H D, Chatterjee S 2010 Phys. Rev. B 82 134428Google Scholar

    [29]

    Linpeng X, Karin T, Durnev M V, Glazov M M, Schott R, Wieck A D, Ludwig A, Fu K M C 2021 Phys. Rev. B 103 115412Google Scholar

    [30]

    Patel K, Prosandeev S, Xu B, Xu C S, Bellaiche L 2021 Phys. Rev. B 103 094103Google Scholar

    [31]

    Zhong H X, Xiong W Q, Lv P F, Yu J, Yuan S J 2021 Phys. Rev. B 103 085124Google Scholar

    [32]

    Goel S, Anh L D, Ohya S, Tanaka M 2019 Phys. Rev. B 99 014431Google Scholar

    [33]

    Rawat K, Fong D D, Aidhy D S 2021 J. Appl. Phys. 129 095301Google Scholar

    [34]

    Breev I D, Poshakinskiy A V, Yakovleva V V, et al. 2021 Appl. Phys. Lett. 118 084003Google Scholar

    [35]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [36]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244Google Scholar

    [37]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717Google Scholar

    [38]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [39]

    Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748Google Scholar

    [40]

    Straumanis M E, Kim C D 1965 J. Electrochem. Soc. 112 112Google Scholar

    [41]

    Straumanis M E, Kim C D 1965 J. Appl. Phys. 36 3822Google Scholar

    [42]

    Jakowetz W, Ruhle W, Breuninger, Pilkuhn M 1972 Phys. Status Solidi (A) 12 169Google Scholar

    [43]

    Van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851Google Scholar

    [44]

    Zota C B, Kim S H, Yokoyama M, Takenaka M, Takagi S 2012 Appl. Phys. Express 5 071201Google Scholar

    [45]

    Yokoyama M, Nishi K, Kim S, Yokoyama H, Takenaka M, Takagi S 2014 Appl. Phys. Lett. 104 093509Google Scholar

    [46]

    Watt J P 1980 J. Appl. Phys. 51 1520Google Scholar

    [47]

    Reuss A 1929 Z. Ang. Math. Mech. 9 49Google Scholar

    [48]

    Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J 2007 Phys. Rev. B 76 054115Google Scholar

    [49]

    Hill B R 1952 Proc. Phys. Soc. A65 349

    [50]

    Li K Y, Ding Z S, Xue D F 2011 Phys. Status Solidi (B) 248 1227Google Scholar

    [51]

    Hao Y L, Li S J, Sun S Y, Zheng C Y, Yang R 2007 Acta Biomater. 3 277Google Scholar

    [52]

    Pugh S F 2009 Philos. Mag. 45 823Google Scholar

    [53]

    Ling T, Yan D Y, Wang H, Jiao Y, Hu Z P, Zheng Y, Zheng L R, Mao J, Liu H, Du X W, Jaroniec M, Qiao S Z 2017 Nat. Commun. 8 1509Google Scholar

    [54]

    Petrie J R, Jeen H, Barron S C, Meyer T L, Lee H N 2016 J. Am. Chem. Soc. 138 7252Google Scholar

    [55]

    Wolfschmidt H, Bussar R, Stimming U 2008 J. Phys. Condens. Matter 20 374127Google Scholar

    [56]

    Tan Y, Liu P, Chen L, Cong W, Ito Y, Han J, Guo X, Tang Z, Fujita T, Hirata A, Chen M 2014 Adv. Mater. 26 8023Google Scholar

    [57]

    王志伟, 郝永芹, 李洋, 谢检来, 王霞, 晏长岭, 魏志鹏, 马晓辉 2018 发光学报 39 935Google Scholar

    Wang Z W, Hao Y Q, Li Y, Xie J L, Wang X, Yan C L, Wei Z P, Ma X H 2018 Chin. J. Lumi. 39 935Google Scholar

    [58]

    Zhang P, Kim Y H, Wei S H 2019 Phys. Rev. Appl. 11 054058Google Scholar

    [59]

    Pan F C, Lin X L, Wang X M 2021 Chin. Phys. B 30 096105Google Scholar

    [60]

    Dietl T, Ohno H 2001 Physica E Low Dimens. Syst. Nanostruct. 9 185Google Scholar

    [61]

    Matsukura F, Ohno H, Dietl T 2002 Handbook of Magnetic Materials 14 1Google Scholar

    [62]

    Yakunin A M, Silov A Y, Koenraad P M, Wolter J H, Roy W V, Boeck J D 2003 Superlattices Microst. 34 539Google Scholar

    [63]

    Khvostikov V P, Khvostikova O A, Gazaryan P Y, et al. 2007 J. Sol. Energy Engineer. 129 291Google Scholar

    [64]

    Kim J M, Dutta P S, Brown E, Borrego J M, Greiff P 2013 Semicond. Sci. Technol. 28 065002Google Scholar

    [65]

    Liu Z, Qiu K 2017 Energy 141 892Google Scholar

    [66]

    Lou Y Y, Zhang X L, Huang A B, Wang Y 2017 Sol. Energy Mater. Sol. Cells 172 124Google Scholar

    [67]

    Li M Z, Chen X L, Li H L, et al. 2018 Chin. Phys. B 27 078101Google Scholar

    [68]

    黄昆 1988 固体物理学 (北京: 高等教育出版社) 第437−452页

    Huang K 1988 Solid State Physics (Beijing: Higher Education Press) pp437−452 (in Chinese)

    [69]

    潘凤春, 林雪玲, 曹志杰, 李小伏 2019 68 184202Google Scholar

    Pan F C, Lin X L, Cao Z J, Li X F 2019 Acta Phys. Sin. 68 184202Google Scholar

    [70]

    Uspenskii Y A, Kulatov E T 2009 J. Magn. Magn. Mater. 321 931Google Scholar

    [71]

    杨卫霞, 张贺翔, 潘凤春, 林雪玲 2021 人工晶体学报 50 2019Google Scholar

    Yang W X, Zhang H X, Pan F C, Lin X L 2021 J. Synth. Cryst. 50 2019Google Scholar

  • [1] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究.  , 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [2] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究.  , 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [3] 叶建峰, 秦铭哲, 肖清泉, 王傲霜, 何安娜, 谢泉. Ti, V, Co, Ni掺杂二维CrSi2材料的电学、磁学及光学性质的第一性原理研究.  , 2021, 70(22): 227301. doi: 10.7498/aps.70.20211023
    [4] 王闯, 赵永红, 刘永. Ga1–xCrxSb (x = 0.25, 0.50, 0.75) 磁学和光学性质的第一性原理研究.  , 2019, 68(17): 176301. doi: 10.7498/aps.68.20182305
    [5] 潘凤春, 林雪玲, 曹志杰, 李小伏. Fe, Co, Ni掺杂GaSb的电子结构和光学性质.  , 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [6] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究.  , 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [7] 潘凤春, 林雪玲, 陈焕铭. C掺杂金红石相TiO2的电子结构和光学性质的第一性原理研究.  , 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [8] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究.  , 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [9] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. Cu-Co共掺杂ZnO光电性质的第一性原理计算.  , 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [10] 谢知, 程文旦. TiO2纳米管电子结构和光学性质的第一性原理研究.  , 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [11] 程旭东, 吴海信, 唐小路, 王振友, 肖瑞春, 黄昌保, 倪友保. Na2Ge2Se5电子结构和光学性质的第一性原理研究.  , 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [12] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究.  , 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [13] 杨春燕, 张蓉, 张利民, 可祥伟. 0.5NdAlO3-0.5CaTiO3电子结构及光学性质的第一性原理计算.  , 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [14] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究.  , 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [15] 李晓凤, 姬广富, 彭卫民, 申筱濛, 赵峰. 高压下固态Kr弹性性质、电子结构和光学性质的第一性原理计算.  , 2009, 58(4): 2660-2666. doi: 10.7498/aps.58.2660
    [16] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究.  , 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [17] 关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭. Al和Ni共掺ZnO光学性质的第一性原理研究.  , 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [18] 邢海英, 范广涵, 周天明. p,n型掺杂剂与Mn共掺杂GaN的电磁性质.  , 2009, 58(5): 3324-3330. doi: 10.7498/aps.58.3324
    [19] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究.  , 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [20] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究.  , 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
计量
  • 文章访问数:  5189
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-15
  • 修回日期:  2022-01-13
  • 上网日期:  2022-01-28
  • 刊出日期:  2022-05-05

/

返回文章
返回
Baidu
map