Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of strain-tunable charge carrier transport properties and optical properties of CrI3 monolayer

Wang Na Xu Hui-Fang Yang Qiu-Yun Zhang Mao-Lian Lin Zi-Jing

Citation:

First-principles study of strain-tunable charge carrier transport properties and optical properties of CrI3 monolayer

Wang Na, Xu Hui-Fang, Yang Qiu-Yun, Zhang Mao-Lian, Lin Zi-Jing
PDF
HTML
Get Citation
  • Because the single-layer CrI3 is a half semiconductor with indirect band gap and magnetic anisotropy, it has received much attention in the spintronic, magneto-electronic and magnetic storage applications. However, the knowledge of the dependence of carrier mobility and optical property on strain is still rather limited. The uniaxial and biaxial strain dependence of electronic, transport, optical and magnetic properties of single-layer CrI3 are systematically investigated by using first-principles calculations, and the results are compared with experimental results. The electronic structures under different strains are first calculated by using the accurate HSE06 functional, then the carrier mobility is estimated by the deformation potential theory and the dielectric function is obtained to estimate the optical absorption especially in the visible light range. Finally, the magnetic anisotropy energy used to estimate the magneto-electronic properties is studied by the Perdew-Bueke-Ernzerhof functional including the spin-orbit coupling. It is found that the ferromagnetic CrI3 is an indirect and half semiconductor with band gap 2.024 eV,$ \Delta {\text{CBM}} $= 1.592 eV, $ \Delta {\text{VBM}} $= 0.238 eV and can be driven into AF-Néel antiferromagnetic phase by applying –6% to –8% (compressive) biaxial stain, exhibiting excellent agreement with the results from the literature. It is found that of single-layer CrI3 has very low carrier mobility with a value within 10 cm2·V–1·s–1 due to the large effective mass and small in-plane stiffness can be remarkably increased by increasing biaxial compression strain attributed to the reduced effective mass. A high electron mobility 174 cm2·V–1·s–1 is obtained in the zigzag direction by applying a –8% biaxial strain reaching the level of monolayer MoS2. The calculated imaginary component of dielectric function along the x (y) direction having two peaks (I, II) in the visible light range is obviously different from that along the z direction, indicating that the single-layer CrI3 has optical anisotropy, demonstrating the good agreement with results from the literature. It is found that the imaginary part of dielectric function shows that an obvious redshift and peak (I, II) values strongly increase with the increase of compressive strain (biaxial), showing good agreement with the calculated electronic structures and indicating that monolayer CrI3 possesses high optical adsorption of visible light under a compressive biaxial strain. Furthermore, it is found that the magnetic anisotropy energy of monolayer CrI3 mainly stemming from the orbital magnetic moment of Cr ions remarkably increases from 0.7365 to 1.08 meV/Cr with g compressive strain increasing. These results indicate that the optoelectronic property of single-layer CrI3 can be greatly improved by applying biaxial compressive strain and the single-layer CrI3 is a promising material for applications in microelectronic, optoelectronic and magnetic storage.
      Corresponding author: Wang Na, wangn@ahstu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Anhui Province, China (Grant No. 2008085QF328), the Natural Science Foundation of the Higher Education Institutions of Anhui Province, China (Grant No. KJ2020A0075), the National Natural Science Foundation of China (Grant No. 12074362), and the Young Core Talents Domestic Visitor Foundation of the Higher Education Institutions of Anhui Province, China (Grant No. gxgnfx2021142).
    [1]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H 2017 Nature 546 270Google Scholar

    [2]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [3]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [4]

    Sivadas N, Okamoto S, Xu X D, Fennie C J, Xiao D 2018 Nano Lett. 18 7658Google Scholar

    [5]

    Guo G X, Bi G, Cai C F, Wu H Z 2018 J. Phys.: Condens. Matter 30 285303Google Scholar

    [6]

    Webster L, Yan J A 2018 Phys. Rev. B 98 144411Google Scholar

    [7]

    Bacaksiz C, Šabani D, Menezes R M, Milošević M V 2021 Phys. Rev. B 103 125418Google Scholar

    [8]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [9]

    Baerends E J 1999 Theor. Chem. Acc. 103 265Google Scholar

    [10]

    Wu Z W, Yu J, Yuan S J 2019 Phys. Chem. Chem. Phys. 21 7750Google Scholar

    [11]

    Mukherjee T, Chowdhury S, Jana D, Lew Yan Voon L C 2019 J. Phys.: Condens. Matter 31 335802Google Scholar

    [12]

    Pizzochero M, Yazyev O V 2020 J. Phys. Chem. C 124 7585

    [13]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [14]

    Lou B B, Wen J, Cai J J, Yeung Y Y, Yin M, Duan C K 2021 Phys. Rev. B 103 075109Google Scholar

    [15]

    Liu X F, Gao P F, Hu W, Yang J L 2020 J. Phys. Chem. Lett 11 4070Google Scholar

    [16]

    Zhang W B, Qu Q, Zhu P, Lam C H 2015 J. Mater. Chem. C 3 12457Google Scholar

    [17]

    Dillon J F, Olson C E 1965 J. Appl. Phys. 36 1259Google Scholar

    [18]

    Kanazawa K K, Street G B 1970 Phys. Status Solidi B 38 445Google Scholar

    [19]

    Guizzetti G, Nosenzo L, Pollini I, Reguzzoni E, Samoggia G, Spinolo G 1976 Phys. Rev. B 14 4622Google Scholar

    [20]

    Bučko T, Lebègue S, Hafner J, et al. 2013 Phys. Rev. B 87 064110Google Scholar

    [21]

    Larsen A H, Vanin M, Mortensen J J R 2013 Phys. Rev. B 80 2665Google Scholar

    [22]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [23]

    Vu T V, Nguyen C V, Phuc H V, Lavrentyev A A, Khyzhun O Y, Hieu N V, Obeid M M, Rai D P, Tong H D, Hieu N N 2021 Phys. Rev. B 103 085422Google Scholar

    [24]

    Abboud M, Ozbey D H, Kilic M E, Durgun E 2022 J. Phys. D: Appl. Phys. 55 185302Google Scholar

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [27]

    Sivadas N, Daniels M W, Swendsen R H, Okamoto S, Xiao D 2015 Phys. Rev. B 91 235425Google Scholar

    [28]

    Li P G, Wang C, Zhang J H, Chen S W, Guo D H, Ji W, Zhong D Y 2020 Sci. Bull 65 1064Google Scholar

    [29]

    Vishkayi S I, Torbatian Z, Qaiumzadeh A, Asgari R 2020 Phys. Rev. Mater 4 094004Google Scholar

    [30]

    Hou B W, Zhang Y M, Zhang H, Shao H Z, Ma C C, Zhang X T, Chen Y, Xu K, Ni G, Zhu H Y 2020 J. Phys. Chem. Lett. 11 3116Google Scholar

    [31]

    Zhang D, Hu S, Liu X, Chen Y, Xia Y, Wang H, Wang H, Ni Y 2020 ACS Appl. Energy Mater 4 357

    [32]

    Cadelano E, Palla P L, Giordano S, Colombo L 2010 Phys. Rev. B 82 235414Google Scholar

    [33]

    Liu J Y, Sun Q, Kawazoe Y, Jena P 2016 Phys. Chem. Chem. Phys 18 8777Google Scholar

    [34]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [35]

    Cai YQ, Zhang G, Zhang Y W 2014 J. Am. Chem. Soc. 136 6269Google Scholar

    [36]

    Xu L, Yang M, Wang S J, Feng Y P 2017 Phys. Rev. B 95 235434Google Scholar

    [37]

    Komsa H P, Krasheninnikov A V 2013 Phys. Rev. B 88 085318Google Scholar

    [38]

    Lu R F, Li F, Salafranca J, Kan E J, Xiao C Y, Deng K M 2014 Phys. Chem. Chem. Phys. 16 4299Google Scholar

    [39]

    Prokop J, Kukunin A, Elmers H J 2005 Phys. Rev. Lett. 95 187202Google Scholar

    [40]

    Nguyen T P T, Yamauchi K, Nakamura K, Oguchi T 2020 J. Phys. Soc. Japan 89 114710Google Scholar

    [41]

    Zhuang H L L, Kent P R C, Hennig R G 2016 Phys. Rev. B 93 134407Google Scholar

    [42]

    Zhang J M, Yang B S, Zheng H L, Han X F, Yan Y 2017 Phys. Chem. Chem. Phys. 19 24341Google Scholar

    [43]

    Ma X F, Yin L, Zou J J, Mi W B, Wang X C 2019 J. Phys. Chem. C 123 17440Google Scholar

  • 图 1  单层CrI3的结构图及原胞(a), AF-Néel晶胞(b), AF-stripy晶胞(c)和AF-zigzag晶胞(d)

    Figure 1.  Atomic structure of CrI3 monolayer together with unit cell (a), AF-Néel crystal cell (b), AF-stripy crystal cell (c) and AF-zigzag crystal cell (d).

    图 2  单层CrI3铁磁结构与反铁磁结构的能量差$ \Delta {E_{{\text{FM - AFM}}}} $随应变的变化规律

    Figure 2.  Variation of energy difference $ \Delta {E_{{\text{FM - AFM}}}} $ between single-layer CrI3 ferromagnetic and antiferromagnetic structures with strain.

    图 3  不同应变下的${{\Delta {\rm{CBM}}, \Delta {\rm{VBM}}}}$

    Figure 3.  The strain dependence of ${{\Delta {\rm{CBM}}, \Delta {\rm{VBM}}}}$.

    图 4  CBM, VBM和禁带宽度随应变的变化规律

    Figure 4.  Effect of strain on the CBM, VBM and band gap of CrI3 monolayer.

    图 5  双轴应变下单层CrI3的电子DOS分布 (a1)—(a5) 拉伸应变量ε取0到0.08; (b1)—(b5) 压缩应变量ε取0到–0.08

    Figure 5.  Biaxial strain dependence of DOS of CrI3 monolayer: (a1)–(a5) withεranging from 0 to 0.08 for tensile (compressive) strain; (b1)–(b5) with ε ranging from 0 to –0.08 for compressive strain.

    图 6  双轴应变下单层CrI3本征载流子沿x (y)方向的迁移率 (e代表电子, p代表空穴)

    Figure 6.  Biaxial strain dependence of the intrinsic carrier mobility of CrI3 monolayer in x (y) direction (e represents for electron, p represents for hole).

    图 7  单层CrI3在可见光区间内的介电函数虚部

    Figure 7.  The imaginary component of dielectric function of CrI3 monolayer in the visible light range.

    图 8  双轴应变下的介电函数虚部 (a), (c) 拉伸应变; (b), (d) 压缩应变

    Figure 8.  Biaxial strain dependence of imaginary component of dielectric function: (a), (c) Tensile strain; (b), (d) compressive strain.

    图 9  单层CrI3的MAE在y-z面内的拟合曲线图

    Figure 9.  The curve fitting of MAE in the y-z plane of CrI3 monolayer.

    图 10  单层CrI3在不同应变下的MAE (a)和Cr-3d的轨道磁矩(b)

    Figure 10.  The effect of different strains on the MAE (a) and orbital moments of Cr-3d (b) in CrI3 monolayer.

    表 1  单层CrI3电子和空穴沿x (y)方向的物理参数

    Table 1.  Physical parameters of electron and hole of CrI3 monolayer in x (y) direction, respectively.

    CarrierDirectionm*/m0md/m0Ed/eVC2D/(N·m–1)μ/(cm2·V–1·s–1)
    Electronx5.455.792.2925.53.26
    y6.152.2524.52.84
    Holex–2.572.323.8725.56.05
    y–2.104.0124.56.63
    DownLoad: CSV

    表 2  双轴应变下单层CrI3电子和空穴沿x (y)方向的有效质量m*和迁移率μ

    Table 2.  The biaxial strain dependence of the effective mass m* and carrier mobility μ of electron and hole of CrI3 monolayer in x (y) direction, respectively.

    Strainm*/(m0μ)/(cm2·V–1·s–1)
    ElectronHoleElectronHole
    $ m_x^* $$ m_y^* $$ m_x^* $$ m_y^* $μxμyμxμy
    0.088.8210.122–1.682–1.6521.211.1112.8011.68
    0.066.428.540–1.79–1.7402.181.6611.3710.46
    0.046.157.640–2.15–1.9002.421.898.288.37
    0.026.786.780–2.098–1.8582.242.218.748.84
    05.456.150–2.57–2.1003.262.846.056.63
    –0.021.901.940–1.45–1.41028.1727.5417.3716.00
    –0.040.981.180–1.48–1.51098.1680.4816.2514.24
    –0.061.021.050–0.84–1.04097.5694.2845.8433.31
    –0.080.710.970–0.78–0.920173.53126.2454.2941.06
    DownLoad: CSV
    Baidu
  • [1]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H 2017 Nature 546 270Google Scholar

    [2]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [3]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [4]

    Sivadas N, Okamoto S, Xu X D, Fennie C J, Xiao D 2018 Nano Lett. 18 7658Google Scholar

    [5]

    Guo G X, Bi G, Cai C F, Wu H Z 2018 J. Phys.: Condens. Matter 30 285303Google Scholar

    [6]

    Webster L, Yan J A 2018 Phys. Rev. B 98 144411Google Scholar

    [7]

    Bacaksiz C, Šabani D, Menezes R M, Milošević M V 2021 Phys. Rev. B 103 125418Google Scholar

    [8]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [9]

    Baerends E J 1999 Theor. Chem. Acc. 103 265Google Scholar

    [10]

    Wu Z W, Yu J, Yuan S J 2019 Phys. Chem. Chem. Phys. 21 7750Google Scholar

    [11]

    Mukherjee T, Chowdhury S, Jana D, Lew Yan Voon L C 2019 J. Phys.: Condens. Matter 31 335802Google Scholar

    [12]

    Pizzochero M, Yazyev O V 2020 J. Phys. Chem. C 124 7585

    [13]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [14]

    Lou B B, Wen J, Cai J J, Yeung Y Y, Yin M, Duan C K 2021 Phys. Rev. B 103 075109Google Scholar

    [15]

    Liu X F, Gao P F, Hu W, Yang J L 2020 J. Phys. Chem. Lett 11 4070Google Scholar

    [16]

    Zhang W B, Qu Q, Zhu P, Lam C H 2015 J. Mater. Chem. C 3 12457Google Scholar

    [17]

    Dillon J F, Olson C E 1965 J. Appl. Phys. 36 1259Google Scholar

    [18]

    Kanazawa K K, Street G B 1970 Phys. Status Solidi B 38 445Google Scholar

    [19]

    Guizzetti G, Nosenzo L, Pollini I, Reguzzoni E, Samoggia G, Spinolo G 1976 Phys. Rev. B 14 4622Google Scholar

    [20]

    Bučko T, Lebègue S, Hafner J, et al. 2013 Phys. Rev. B 87 064110Google Scholar

    [21]

    Larsen A H, Vanin M, Mortensen J J R 2013 Phys. Rev. B 80 2665Google Scholar

    [22]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [23]

    Vu T V, Nguyen C V, Phuc H V, Lavrentyev A A, Khyzhun O Y, Hieu N V, Obeid M M, Rai D P, Tong H D, Hieu N N 2021 Phys. Rev. B 103 085422Google Scholar

    [24]

    Abboud M, Ozbey D H, Kilic M E, Durgun E 2022 J. Phys. D: Appl. Phys. 55 185302Google Scholar

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [27]

    Sivadas N, Daniels M W, Swendsen R H, Okamoto S, Xiao D 2015 Phys. Rev. B 91 235425Google Scholar

    [28]

    Li P G, Wang C, Zhang J H, Chen S W, Guo D H, Ji W, Zhong D Y 2020 Sci. Bull 65 1064Google Scholar

    [29]

    Vishkayi S I, Torbatian Z, Qaiumzadeh A, Asgari R 2020 Phys. Rev. Mater 4 094004Google Scholar

    [30]

    Hou B W, Zhang Y M, Zhang H, Shao H Z, Ma C C, Zhang X T, Chen Y, Xu K, Ni G, Zhu H Y 2020 J. Phys. Chem. Lett. 11 3116Google Scholar

    [31]

    Zhang D, Hu S, Liu X, Chen Y, Xia Y, Wang H, Wang H, Ni Y 2020 ACS Appl. Energy Mater 4 357

    [32]

    Cadelano E, Palla P L, Giordano S, Colombo L 2010 Phys. Rev. B 82 235414Google Scholar

    [33]

    Liu J Y, Sun Q, Kawazoe Y, Jena P 2016 Phys. Chem. Chem. Phys 18 8777Google Scholar

    [34]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [35]

    Cai YQ, Zhang G, Zhang Y W 2014 J. Am. Chem. Soc. 136 6269Google Scholar

    [36]

    Xu L, Yang M, Wang S J, Feng Y P 2017 Phys. Rev. B 95 235434Google Scholar

    [37]

    Komsa H P, Krasheninnikov A V 2013 Phys. Rev. B 88 085318Google Scholar

    [38]

    Lu R F, Li F, Salafranca J, Kan E J, Xiao C Y, Deng K M 2014 Phys. Chem. Chem. Phys. 16 4299Google Scholar

    [39]

    Prokop J, Kukunin A, Elmers H J 2005 Phys. Rev. Lett. 95 187202Google Scholar

    [40]

    Nguyen T P T, Yamauchi K, Nakamura K, Oguchi T 2020 J. Phys. Soc. Japan 89 114710Google Scholar

    [41]

    Zhuang H L L, Kent P R C, Hennig R G 2016 Phys. Rev. B 93 134407Google Scholar

    [42]

    Zhang J M, Yang B S, Zheng H L, Han X F, Yan Y 2017 Phys. Chem. Chem. Phys. 19 24341Google Scholar

    [43]

    Ma X F, Yin L, Zou J J, Mi W B, Wang X C 2019 J. Phys. Chem. C 123 17440Google Scholar

  • [1] Jiang Nan, Li Ao-Lin, Qu Shui-Xian, Gou Si, Ouyang Fang-Ping. First principles study of magnetic transition of strain induced monolayer NbSi2N4. Acta Physica Sinica, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [2] Pan Feng-Chun, Lin Xue-Ling, Wang Xu-Ming. First-principles study of strain effect on magnetic and optical properties in (Ga, Mo)Sb. Acta Physica Sinica, 2022, 71(9): 096103. doi: 10.7498/aps.71.20212316
    [3] Li Fa-Yun, Yang Zhi-Xiong, Cheng Xue, Zeng Li-Ying, Ouyang Fang-Ping. First-principles study of electronic structure and optical properties of monolayer defective tellurene. Acta Physica Sinica, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [4] Wang Chuang, Zhao Yong-Hong, Liu Yong. First-principles calculations of magnetic and optical properties of Ga1–xCrxSb (x = 0.25, 0.50, 0.75). Acta Physica Sinica, 2019, 68(17): 176301. doi: 10.7498/aps.68.20182305
    [5] Zhao Bai-Qiang, Zhang Yun, Qiu Xiao-Yan, Wang Xue-Wei. First-principles study on the electronic structures and optical properties of Cu, Fe doped LiNbO_3 crystals. Acta Physica Sinica, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [6] Pan Feng-Chun, Lin Xue-Ling, Chen Huan-Ming. Electronic structure and optical properties of C doped rutile TiO2: the first-principles calculations. Acta Physica Sinica, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [7] Luo Zui-Fen, Cen Wei-Fu, Fan Meng-Hui, Tang Jia-Jun, Zhao Yu-Jun. First-principles study of electronic and optical properties of BiTiO3. Acta Physica Sinica, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [8] He Jing-Fang, Zheng Shu-Kai, Zhou Peng-Li, Shi Ru-Qian, Yan Xiao-Bing. First-principles calculations on the electronic and optical properties of ZnO codoped with Cu-Co. Acta Physica Sinica, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [9] Xie Zhi, Cheng Wen-Dan. First-principles study of electronic structure and optical properties of TiO2 nanotubes. Acta Physica Sinica, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [10] Cheng Xu-Dong, Wu Hai-Xin, Tang Xiao-Lu, Wang Zhen-You, Xiao Rui-Chun, Huang Chang-Bao, Ni You-Bao. First principles study on the electronic structures and optical properties of Na2Ge2Se5. Acta Physica Sinica, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [11] Cheng He-Ping, Dan Jia-Kun, Huang Zhi-Meng, Peng Hui, Chen Guang-Hua. First-principles study on the electronic structure and optical properties of RDX. Acta Physica Sinica, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [12] Wang Yin, Feng Qing, Wang Wei-Hua, Yue Yuan-Xia. First-principles study on the electronic and optical property of C-Zn co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [13] Yang Chun-Yan, Zhang Rong, Zhang Li-Min, Ke Xiang-Wei. Electronic structure and optical properties of 0.5NdAlO3-0.5CaTiO3 from first-principles calculation. Acta Physica Sinica, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [14] Song Qing-Gong, Liu Li-Wei, Zhao Hui, Yan Hui-Yu, Du Quan-Guo. First-principles study on the electronic structure and optical properties of YFeO3. Acta Physica Sinica, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [15] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [16] Li Xiao-Feng, Ji Guang-Fu, Peng Wei-Min, Shen Xiao-Meng, Zhao Feng. Elastic constants, electronic structure and optical properties of solid krypton under pressure by first-principles calculations. Acta Physica Sinica, 2009, 58(4): 2660-2666. doi: 10.7498/aps.58.2660
    [17] Guan Li, Li Qiang, Zhao Qing-Xun, Guo Jian-Xin, Zhou Yang, Jin Li-Tao, Geng Bo, Liu Bao-Ting. First-principles study of the optical properties of ZnO doped with Al, Ni. Acta Physica Sinica, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [18] Lin Zhu, Guo Zhi-You, Bi Yan-Jun, Dong Yu-Cheng. Ferromagnetism and the optical properties of Cu-doped AlN from first-principles study. Acta Physica Sinica, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [19] Bi Yan-Jun, Guo Zhi-You, Sun Hui-Qing, Lin Zhu, Dong Yu-Cheng. The electronic structure and optical properties of Co and Mn codoped ZnO from first-principle study. Acta Physica Sinica, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [20] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
  • supplement 20-20221019补充材料+.pdf supplement
Metrics
  • Abstract views:  4829
  • PDF Downloads:  172
  • Cited By: 0
Publishing process
  • Received Date:  22 May 2022
  • Accepted Date:  15 June 2022
  • Available Online:  09 October 2022
  • Published Online:  20 October 2022

/

返回文章
返回
Baidu
map