Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetism and electronic properties of LiFeAs superconducting thin filma under two-dimensional strains effect

Wang Xin Li Hua Dong Zheng-Chao Zhong Chong-Gui

Citation:

Magnetism and electronic properties of LiFeAs superconducting thin filma under two-dimensional strains effect

Wang Xin, Li Hua, Dong Zheng-Chao, Zhong Chong-Gui
PDF
HTML
Get Citation
  • The magnetism, band properties and electronic density of states of LiFeAs superconducting thin film with two-dimensional strain are investigated by using the first principles calculations based on density functional theory, and the influences of different strains on the characteristics of superconducting films are analyzed in detail. The results show that the magnetic ground configuration is the striped antiferromagnetic state of nostrained LiFeAs thin film, and the ground structure of this system is unchanged in the range of applied 1%−6% compressive and tensile strain. The density of states near the Fermi level is mainly from the contribution of Fe-3d orbital and a few As-4p electrons. The electron spin exchange coupling between Fe ions is realized by As ions. Furthermore, unlike the case of the nostrain and the tensile strain, with increasing the compressive strain, the localized antiparallel electron spin magnetic moments of Fe ion decrease, the density of states at the Fermi surface improves, and the itinerant electron magnetism of Fe ions increases, which all greatly suppress the antiferromagnetic properties of thin film and enhance the superconducting phase transition temperature. The superconductivity of LiFeAs thin film originates from the Cooper pairs of electrons between the hole-type and electronic-type bands near the Fermi surface through the antiferromagnetic superexchange coupling effect. Instead, the LiFeAs thin film with the tensile strain presents completely opposite properties, that is to say, the decrease of the electronic density of states in the Fermi level brings about the weakening of the metal properties and the increasing of the antiferromagnetic exchange coupling. Particularly, the band structure of hole-type near the Fermi surface disappears, and the occurrence of Cooper pairs of electrons becomes significantly reduced, resulting in the suppressed superconducting phase transition when the LiFeAs thin film is subjected to tensile strain. In addition, the change of antiferromagnetic exchange coupling and magnetic moments of Fe ions are also explained according to the variation of electronic density of states of the Fe-3d energy levels during the distortion of FeAs tetrahedrons due to compressive strain. In brief, our researches provide an effective way to improve the superconducting properties of LiFeAs thin film and may promote the relevant practical applications of iron-based superconductors in the future.
      Corresponding author: Dong Zheng-Chao, dzc@ntu.edu.cn ; Zhong Chong-Gui, chgzhong@ntu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11447229), the National Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012655), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX18_2412).
    [1]

    Nomura T, Kim S W, Kamihara Y, Hirano M, Sushko P V, Kato K, Takata M, Shluger A L, Hosono H 2008 Supercond. Sci. Technol. 21 125028Google Scholar

    [2]

    Dai P C 2015 Rev. Mod. Phys. 87 855Google Scholar

    [3]

    杜增义, 方德龙, 王震宇, 杜冠, 杨雄, 杨欢, 顾根大, 闻海虎 2015 64 097401Google Scholar

    Du Z Y, Fang D L, Wang Z Y, Du G, Yang X, Yang H, Gu G D, Wen H H 2015 Acta Phys. Sin. 64 097401Google Scholar

    [4]

    Dubroka A, Kim K W, Rossle M, Malik V K, Drew A J, Liu R H, Wu G, Chen X H, Bernhard C 2008 Phys. Rev. Lett. 101 097011Google Scholar

    [5]

    Ma L, Zhang J, Chen G F, Yu W Q 2010 Phys. Rev. B 82 180501Google Scholar

    [6]

    Qureshi N, Steffens P, Drees Y, Komarek A C, Lamago D, Sidis Y, Harnagea L, Grafe H J, Wurmehl S, Buchner B, Braden M 2012 Phys. Rev. Lett. 108 117001Google Scholar

    [7]

    Wang M, Wang M Y, Miao H, Carr S V, Abernathy D L, Stone M B, Wang X C, Xing L Y, Jin C Q, Zhang X T, Hu J P, Xiang T, Ding H, Dai P C 2012 Phys. Rev. B 86 144511Google Scholar

    [8]

    Umezawa K, Li Y, Miao H, Nakayama K, Liu Z H, Richard P, Sato T, He J B, Wang D M, Chen G F, Ding H, Takahashi T, Wang S C 2012 Phys. Rev. Lett. 108 037002Google Scholar

    [9]

    Qureshi N, Steffens P, Lamago D, Sidis Y, Sobolev O, Ewings R A, Harnagea L, Wurmehl S, Buchner B, Braden M 2014 Phys. Rev. B 90 144503Google Scholar

    [10]

    Zhang S J, Wang X C, Sammynaiken R, Tse J S,Yang L X, Li Z, Liu Q Q, Desgreniers S, Yao Y, Liu H Z, Jin C Q 2009 Phys. Rev. B 80 014506Google Scholar

    [11]

    Zeng B, Watanabe D, Zhang Q R, Li G, Besara T, Siegrist T, Xing L Y, Wang X C, Jin C Q, Goswami P, Johannes M D, Balicas L 2013 Phys. Rev. B 88 144518Google Scholar

    [12]

    靳常青, 刘青清, 邓正, 张思佳, 邢令义, 朱金龙, 孔盼盼, 望贤成 2013 高压 27 473Google Scholar

    Jin C Q, Liu Q Q, Deng Z, Zhang S J, Xing L Y, Zhu J L, Kong P P, Wang X C 2013 Chinese Journal of High Pressure Physics 27 473Google Scholar

    [13]

    Li Y, Yin Z P, Wang X C, Tam D W, Abernathy D L, Podlesnyak A, Zhang C L, Wang M, Xing L Y, Jin C Q, Haule K, Kotliar G, Maier T A, Dai P C 2016 Phys. Rev. Lett. 116 247001Google Scholar

    [14]

    Miao H, Qian T, Shi X, Richard P, Kim T K, Hoesch M, Xing L Y, Wang X C, Jin C Q, Hu J P, Ding H 2015 Nat. Commun. 6 6056Google Scholar

    [15]

    Pitcher M J, Parker D R, Adamson P, Herkelrath S J C, Boothroyd A T, Ibberson R M, Brunell M, Clarke S J 2008 Chem. Commun. 45 5918

    [16]

    李世超, 甘远, 王靖辉, 冉柯静, 温锦生 2015 64 097503Google Scholar

    Li S C, Gan Y, Wang J H, Ran K J, Wen J S 2015 Acta Phys. Sin. 64 097503Google Scholar

    [17]

    Tapp J H, Tang Z J, Lv B, Sasmal K, Lorenz B, Chu P C W, Guloy A M 2008 Phys. Rev. B 78 060505Google Scholar

    [18]

    Kawasaki S, Mabuchi T, Maeda S, Adachi T, Mizukami T, Kudo K, Nohara M, Zheng G Q 2015 Phys. Rev. B 92 180508Google Scholar

    [19]

    Wang H D, Dong C H, Li Z J, Mao Q H, Zhu S S, Feng C M, Yuan H Q, Fang M H 2011 Europhys. Lett. 93 47004Google Scholar

    [20]

    Tafti F F, Ouellet A, Juneau-Fecteau A, Faucher S, Lapointe-Major M, Doiron-Leyraud N, Wang A F, Luo X G, Chen X H, Taillefer L 2015 Phys. Rev. B 91 054511Google Scholar

    [21]

    Krüger E, Strunk H P 2014 J. Supercond. Nov. Magn. 27 601Google Scholar

    [22]

    Mollah S 2004 J. Phys.: Condens. Matter 16 R1237Google Scholar

    [23]

    张加宏, 马荣, 刘甦, 刘楣 2006 55 4816Google Scholar

    Zhang J H, Ma R, Liu S, Liu M 2006 Acta Phys. Sin. 55 4816Google Scholar

    [24]

    俞榕 2015 64 217102Google Scholar

    Yu R 2015 Acta Phys. Sin. 64 217102Google Scholar

    [25]

    Chen Z J, Xu G B, Yan J G, Kuang Z, Chen T H, Li D H 2016 J. Appl. Phys. 120 235103Google Scholar

    [26]

    Yu R, Zhu J X, Si Q M 2011 Phys. Rev. Lett. 106 186401Google Scholar

    [27]

    衣玮, 吴奇, 孙力玲 2017 66 037402Google Scholar

    Yi W, Wu Q, Sun L L 2017 Acta Phys. Sin. 66 037402Google Scholar

    [28]

    Lankau A, Koepernik K, Borisenko S, Zabolotnyy V, Büchner B, Brink J V D, Eschrig H 2010 Phys. Rev. B 82 184518Google Scholar

    [29]

    李斌, 邢钟文, 刘楣 2011 60 077402

    Li B, Xing Z W, Liu M 2011 Acta Phys. Sin. 60 077402 (in Chinese)

  • 图 1  LFA的晶体结构

    Figure 1.  Crystal structure of LFA film.

    图 2  LFA薄膜中Fe离子可能的四种磁性结构 (a) 条形铁磁; (b)条形反铁磁; (c) 棋盘形铁磁; (d) 棋盘形反铁磁; 箭头表示自旋方向

    Figure 2.  Four possible kinds of magnetic structures of Fe ion in LFA thin films: (a) Striped-type ferromagnetic order; (b) striped-type antiferromagnetic order; (c) checkerboard-type ferromagnetic order; (d) checkerboard-type antiferromagnetic order. The arrows represent the directions of electronic spins.

    图 3  LiFeAs薄膜中四种磁性结构的相对能量随晶格常数的变化

    Figure 3.  Relative energies of different magnetic states varying with lattice constant of LFA thin film.

    图 4  LFA超导薄膜AFM-2a磁性结构在不同应变条件下的能带结构 (a)无应变; (b) 压应变(−3%); (c) 张应变(3%)

    Figure 4.  The band structure of LFA superconductor thin film (AFM-2a magnetic states) under different strains: (a) Nostrained effect; (b) compressive strain (−3%); (c) tensile strain (3%).

    图 5  LFA超导薄膜在不同应变条件时各离子的电子态密度 (a) 无应变; (b) 压应变(−3%); (c) 张应变(3%)

    Figure 5.  The density of electronic states of different ions in LFA superconductor thin film under different strains: (a) Nostrained effect; (b) compressive strain (−3%); (c) tensile strain (3%).

    图 6  以Fe离子为中心的As四面体结构畸变与3d轨道能级分裂 (a) 无应变时扁平的四面体; (b) 压应变作用下畸变后的正四面体

    Figure 6.  The tetrahedral structure distortion of As centered on Fe ions and 3d orbital energy splitting of Fe ions: (a) Tabular tetrahedron without strain effect; (b) the distorted regular tetrahedron under compressive strain effect.

    表 1  无应变时铁基超导薄膜LFA不同磁性结构下的单胞能量

    Table 1.  Energy of unit cell of the iron-based superconductor thin film LFA in different magnetic structures.

    磁性结构条形铁磁条形反铁磁棋盘形铁磁棋盘形反铁磁
    单胞能量/eV−131.2446−131.2508−130.8171−130.8156
    DownLoad: CSV

    表 2  不同应变作用下LFA薄膜中Fe离子的自旋磁矩

    Table 2.  Magnetic moments of Fe ions of LFA thin films under different strains.

    应变Fe 离子总磁矩
    ${m_{\rm{t}}}$/${\mu _{\rm{B}}}$
    巡游磁矩
    ${m_{\rm{i}}}$/${\mu _{\rm{B}}}$
    局域磁矩
    ${m_{\rm{l}}}$/${\mu _{\rm{B}}}$
    −3%1.6150.2911.324
    0%1.5320.1871.345
    3%1.4140.0261.388
    DownLoad: CSV
    Baidu
  • [1]

    Nomura T, Kim S W, Kamihara Y, Hirano M, Sushko P V, Kato K, Takata M, Shluger A L, Hosono H 2008 Supercond. Sci. Technol. 21 125028Google Scholar

    [2]

    Dai P C 2015 Rev. Mod. Phys. 87 855Google Scholar

    [3]

    杜增义, 方德龙, 王震宇, 杜冠, 杨雄, 杨欢, 顾根大, 闻海虎 2015 64 097401Google Scholar

    Du Z Y, Fang D L, Wang Z Y, Du G, Yang X, Yang H, Gu G D, Wen H H 2015 Acta Phys. Sin. 64 097401Google Scholar

    [4]

    Dubroka A, Kim K W, Rossle M, Malik V K, Drew A J, Liu R H, Wu G, Chen X H, Bernhard C 2008 Phys. Rev. Lett. 101 097011Google Scholar

    [5]

    Ma L, Zhang J, Chen G F, Yu W Q 2010 Phys. Rev. B 82 180501Google Scholar

    [6]

    Qureshi N, Steffens P, Drees Y, Komarek A C, Lamago D, Sidis Y, Harnagea L, Grafe H J, Wurmehl S, Buchner B, Braden M 2012 Phys. Rev. Lett. 108 117001Google Scholar

    [7]

    Wang M, Wang M Y, Miao H, Carr S V, Abernathy D L, Stone M B, Wang X C, Xing L Y, Jin C Q, Zhang X T, Hu J P, Xiang T, Ding H, Dai P C 2012 Phys. Rev. B 86 144511Google Scholar

    [8]

    Umezawa K, Li Y, Miao H, Nakayama K, Liu Z H, Richard P, Sato T, He J B, Wang D M, Chen G F, Ding H, Takahashi T, Wang S C 2012 Phys. Rev. Lett. 108 037002Google Scholar

    [9]

    Qureshi N, Steffens P, Lamago D, Sidis Y, Sobolev O, Ewings R A, Harnagea L, Wurmehl S, Buchner B, Braden M 2014 Phys. Rev. B 90 144503Google Scholar

    [10]

    Zhang S J, Wang X C, Sammynaiken R, Tse J S,Yang L X, Li Z, Liu Q Q, Desgreniers S, Yao Y, Liu H Z, Jin C Q 2009 Phys. Rev. B 80 014506Google Scholar

    [11]

    Zeng B, Watanabe D, Zhang Q R, Li G, Besara T, Siegrist T, Xing L Y, Wang X C, Jin C Q, Goswami P, Johannes M D, Balicas L 2013 Phys. Rev. B 88 144518Google Scholar

    [12]

    靳常青, 刘青清, 邓正, 张思佳, 邢令义, 朱金龙, 孔盼盼, 望贤成 2013 高压 27 473Google Scholar

    Jin C Q, Liu Q Q, Deng Z, Zhang S J, Xing L Y, Zhu J L, Kong P P, Wang X C 2013 Chinese Journal of High Pressure Physics 27 473Google Scholar

    [13]

    Li Y, Yin Z P, Wang X C, Tam D W, Abernathy D L, Podlesnyak A, Zhang C L, Wang M, Xing L Y, Jin C Q, Haule K, Kotliar G, Maier T A, Dai P C 2016 Phys. Rev. Lett. 116 247001Google Scholar

    [14]

    Miao H, Qian T, Shi X, Richard P, Kim T K, Hoesch M, Xing L Y, Wang X C, Jin C Q, Hu J P, Ding H 2015 Nat. Commun. 6 6056Google Scholar

    [15]

    Pitcher M J, Parker D R, Adamson P, Herkelrath S J C, Boothroyd A T, Ibberson R M, Brunell M, Clarke S J 2008 Chem. Commun. 45 5918

    [16]

    李世超, 甘远, 王靖辉, 冉柯静, 温锦生 2015 64 097503Google Scholar

    Li S C, Gan Y, Wang J H, Ran K J, Wen J S 2015 Acta Phys. Sin. 64 097503Google Scholar

    [17]

    Tapp J H, Tang Z J, Lv B, Sasmal K, Lorenz B, Chu P C W, Guloy A M 2008 Phys. Rev. B 78 060505Google Scholar

    [18]

    Kawasaki S, Mabuchi T, Maeda S, Adachi T, Mizukami T, Kudo K, Nohara M, Zheng G Q 2015 Phys. Rev. B 92 180508Google Scholar

    [19]

    Wang H D, Dong C H, Li Z J, Mao Q H, Zhu S S, Feng C M, Yuan H Q, Fang M H 2011 Europhys. Lett. 93 47004Google Scholar

    [20]

    Tafti F F, Ouellet A, Juneau-Fecteau A, Faucher S, Lapointe-Major M, Doiron-Leyraud N, Wang A F, Luo X G, Chen X H, Taillefer L 2015 Phys. Rev. B 91 054511Google Scholar

    [21]

    Krüger E, Strunk H P 2014 J. Supercond. Nov. Magn. 27 601Google Scholar

    [22]

    Mollah S 2004 J. Phys.: Condens. Matter 16 R1237Google Scholar

    [23]

    张加宏, 马荣, 刘甦, 刘楣 2006 55 4816Google Scholar

    Zhang J H, Ma R, Liu S, Liu M 2006 Acta Phys. Sin. 55 4816Google Scholar

    [24]

    俞榕 2015 64 217102Google Scholar

    Yu R 2015 Acta Phys. Sin. 64 217102Google Scholar

    [25]

    Chen Z J, Xu G B, Yan J G, Kuang Z, Chen T H, Li D H 2016 J. Appl. Phys. 120 235103Google Scholar

    [26]

    Yu R, Zhu J X, Si Q M 2011 Phys. Rev. Lett. 106 186401Google Scholar

    [27]

    衣玮, 吴奇, 孙力玲 2017 66 037402Google Scholar

    Yi W, Wu Q, Sun L L 2017 Acta Phys. Sin. 66 037402Google Scholar

    [28]

    Lankau A, Koepernik K, Borisenko S, Zabolotnyy V, Büchner B, Brink J V D, Eschrig H 2010 Phys. Rev. B 82 184518Google Scholar

    [29]

    李斌, 邢钟文, 刘楣 2011 60 077402

    Li B, Xing Z W, Liu M 2011 Acta Phys. Sin. 60 077402 (in Chinese)

  • [1] Liu Jun-Ling, Bai Yu-Jie, Xu Ning, Zhang Qin-Fang. First-principles study on electronic structure of GaS/Mg(OH)2 heterostructure. Acta Physica Sinica, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] Bai Gang, Han Yu-Hang, Gao Cun-Fa. Phase transitions and electrocaloric effects of (111)-oriented K0.5Na0.5NbO3 epitaxial films: effect of external stress and misfit strains. Acta Physica Sinica, 2022, 71(9): 097701. doi: 10.7498/aps.71.20220234
    [3] Jiang Nan, Li Ao-Lin, Qu Shui-Xian, Gou Si, Ouyang Fang-Ping. First principles study of magnetic transition of strain induced monolayer NbSi2N4. Acta Physica Sinica, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [4] Wang Shao-Xia, Zhao Xu-Cai, Pan Duo-Qiao, Pang Guo-Wang, Liu Chen-Xi, Shi Lei-Qian, Liu Gui-An, Lei Bo-Cheng, Huang Yi-Neng, Zhang Li-Li. First principle study of influence of transition metal (Cr, Mn, Fe, Co) doping on magnetism of TiO2. Acta Physica Sinica, 2020, 69(19): 197101. doi: 10.7498/aps.69.20200644
    [5] Xiao Mei-Xia, Liang You-Ping, Chen Yu-Qin, Liu-Meng. Strain field tuning the electronic and magnetic properties of semihydrogenated two-bilayer GaN nanosheets. Acta Physica Sinica, 2016, 65(2): 023101. doi: 10.7498/aps.65.023101
    [6] Yao Zhong-Yu, Sun Li, Pan Meng-Mei, Sun Shu-Juan. First-principle studies of half-metallicities and magnetisms of the semi-Heusler alloys CoCrTe and CoCrSb. Acta Physica Sinica, 2016, 65(12): 127501. doi: 10.7498/aps.65.127501
    [7] Wang Jiang-Jing, Shao Rui-Wen, Deng Qing-Song, Zheng Kun. Study on electrical transport properties of strained Si nanowires by in situ transmission electron microscope. Acta Physica Sinica, 2014, 63(11): 117303. doi: 10.7498/aps.63.117303
    [8] Xie Jian-Feng, Cao Jue-Xian. Modulation of the band structure of layered BN film with stain. Acta Physica Sinica, 2013, 62(1): 017302. doi: 10.7498/aps.62.017302
    [9] Wei Zhe, Yuan Jian-Mei, Li Shun-Hui, Liao Jian, Mao Yu-Liang. Density functional study on the electronic and magnetic properties of two-dimensional hexagonal boron nitride containing vacancy. Acta Physica Sinica, 2013, 62(20): 203101. doi: 10.7498/aps.62.203101
    [10] Zhang Lu-Shan, Yu Hong-Fei, Guo Yong-Quan. Structural analysis of FeTe alloy and its superconducting film preparation. Acta Physica Sinica, 2012, 61(1): 016101. doi: 10.7498/aps.61.016101
    [11] Luo Li-Jin, Zhong Chong-Gui, Fang Jing-Huai, Zhao Yong-Lin, Zhou Peng-Xia, Jiang Xue-Fan. Responses of electronic structure and magnetism to tetragonal distortion and their influence on pressure for the Heusler alloy Mn2 NiAl. Acta Physica Sinica, 2011, 60(12): 127502. doi: 10.7498/aps.60.127502
    [12] Wang Yu-Mei, Pei Hui-Xia, Ding Jun, Wen Li-Wei. First-principles study of magnetism and electronic structureof Sb-containing half-Heusler alloys. Acta Physica Sinica, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [13] Yao Zhong-Yu, Fu Jun, Gong Shao-Hua, Zhang Yue-Sheng, Yao Kai-Lun. Influence of lattice uniform strain on half-metallicity and magnetism of zinc-blende CrS and CrSe. Acta Physica Sinica, 2011, 60(12): 127103. doi: 10.7498/aps.60.127103
    [14] Wang Yong-Long, Pan Hong-Zhe, Xu Ming, Chen Li, Sun Yuan-Yuan. Electronic structure and magnetism of single-layer trigonal graphene quantum dots with zigzag edges. Acta Physica Sinica, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [15] Zhang Yu, Liu Yong-Jun, Liu Xian-Feng, Jiang Xue-Fan. Electronic structure and magnetism of the double perovskite SrKFeWO6. Acta Physica Sinica, 2010, 59(5): 3432-3437. doi: 10.7498/aps.59.3432
    [16] Shi Li-Bin, Zheng Yan, Ren Jun-Yuan, Li Ming-Biao, Zhang Guo-Hua. Strain effect on microwave surface resistance of YBa2Cu3O7-δ/LaAlO3 and Tl2Ba2CaCu2O8/LaAlO3 high temperature superconducting thin films. Acta Physica Sinica, 2008, 57(2): 1183-1189. doi: 10.7498/aps.57.1183
    [17] Yao Fei, Xue Chun-Lai, Cheng Bu-Wen, Wang Qi-Ming. Band gap Narrowing in heavily B doped Si1-xGex strained layers. Acta Physica Sinica, 2007, 56(11): 6654-6659. doi: 10.7498/aps.56.6654
    [18] Zhang Jia-Hong, Ma Rong, Liu Su, Liu Mei. First-principles calculations on the superconductivity and magnetism of doping MgCNi3. Acta Physica Sinica, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
    [19] Shi Yi-Sheng. Theoretical study of the structure and magnetism of Fe1-xPdx alloys. Acta Physica Sinica, 2003, 52(4): 993-998. doi: 10.7498/aps.52.993
    [20] TAN MING-QIU, TAO XIANG-MING, HE JUN-HUI. FIRST-PRINCIPLES STUDY ON THE ELECTRONIC AND MAGNETIC PROPERTIES OF PEROVSKITE RUTHENATE SrRuO3. Acta Physica Sinica, 2001, 50(11): 2203-2207. doi: 10.7498/aps.50.2203
Metrics
  • Abstract views:  7930
  • PDF Downloads:  72
  • Cited By: 0
Publishing process
  • Received Date:  14 May 2018
  • Accepted Date:  13 November 2018
  • Available Online:  01 January 2019
  • Published Online:  20 January 2019

/

返回文章
返回
Baidu
map