-
Acoustic propagation in shallow water is greatly influenced by the properties of the sea bottom. The dispersion characteristics of modes are relatively sensitive to the bottom parameters and have been used to invert the bottom parameters. Since the inversion error using a single wideband sound source increases with increasing range, a far distance inversion method based on the modal dispersion curve using a single hydrophone with two wideband sound sources is presented in this paper, in which a warping transform is applied so that it can accurately extract the modal dispersion curve from the warped signal spectrum. Experimental data used for the inversion are acquired using a hydrophone of vertical array in the South Sea of China during the Autumn in 2012. The transmitted signals are explosive signals, and the bottom sound speed and density are inverted by matching the theoretical arrival time differences of various modes and frequencies with those calculated using the experimental data. The attenuation coefficient is deduced using the transmission loss data recorded in the experiment. A genetic algorithm (GA) is used for optimization search for the parameter bounds. Inversion results demonstrate that the arrival time difference when using the bottom sound speed and density show a high consistency with those obtained using the experimental data. Moreover, the attenuation coefficient is nonlinear over the frequency band from 100 to 315 Hz. The validity of inverted parameters is evaluated by the posteriori probability distributions, and the numerical results of arrival time differences calculated using the inverted sound speed and density are in good agreement with those extracted from the other two wideband explosive signals at different distances. In addition, the theoretical transmission loss calculated using the inverted attenuation coefficient matches the experiment data very well. It is shown that the inversion scheme can provide a valid and stable environmental estimation.
-
Keywords:
- geoacoustic inversion /
- two wideband explosive signals /
- modal dispersion /
- transmission loss
[1] Duan R, Yang K D, Ma Y L, Lei B 2012 Chin Phys. B 21 124301
[2] Gac J L, Asch M, Stephan Y, Demoulin X 2003 IEEE J. Oceanic Engineer. 28 479
[3] Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303 (in Chinese) [戚聿波, 周士弘, 张仁和, 张波, 任云 2014 63 044303]
[4] Baraniuk R, Jones D 1995 IEEE Trans. Signal Proc. 43 2269
[5] Bonnel J, Nicolas B, Mars J I, Walker S C 2010 J. Acoust. Soc. Am. 128 719
[6] Bonnel J, Chapman N 2011 J. Acoust. Soc. Am. 130 EL101
[7] Lu L C, Ma L 2015 Acta Phys. Sin. 64 024305 (in Chinese) [鹿力成, 马力 2015 64 024305]
[8] Li Z L, Zhang R H 2007 Chin. Phys. Lett. 24 471
[9] Li Z L, Yan J, Li F H, Guo L H 2002 Acta Acoust. 27 487 (in Chinese) [李整林, 鄢锦, 李风华, 郭良浩 2002 声学学报 27 487]
[10] Zhang X L, Li Z L, Huang X D 2009 Acta Acoust. 34 54 (in Chinese) [张学磊, 李整林, 黄晓砥 2009 声学学报 34 54]
[11] Gerstoft P 1994 J. Acoust. Soc. Am. 95 770
[12] Gerstoft P, Mechlenbrauker C F 1998 J. Acoust. Soc. Am. 104 808
[13] Jensen F B, Kuperman W A, Porter M B, Schmidt H 2000 Computational Ocean Acoustics ( Vol. 2) (New York: American Institute of Physics) p67
[14] Tolstoy I, Clay C 1987 Theory and Experiment in Underwater Sound ( Vol. 2) (New York: Acoustical Society of American)
[15] Duda R O, Hart P E 1972 Commun ACM 15 11
[16] Fernandes L A F, Oliveira M M 2008 PRS 41 299
[17] Yang K D, Ma Y L, Sun C, Miller J H, Potty G R 2004 IEEE J. Oceanic Engineer. 29 964
[18] Juan Z, Chapman N, Bonnel J 2013 J. Acoust. Soc. Am. 134 394
[19] Hamilton E L 1980 J. Acoust. Soc. Am. 68 1313
[20] Zhou J X, Zhang X Z, Rogers P H, Jarzynski J 1987 J. Acoust. Soc. Am. 82 2068
[21] Stall R D, Houtz R E 1983 J. Acoust. Soc. Am. 73 163
[22] Zhang T W, Yang K D, Ma Y L, Li X G 2010 Acta Phys. Sin. 59 3294 (in Chinese) [张同伟, 杨坤德, 马远良, 黎雪刚 2010 59 3294]
-
[1] Duan R, Yang K D, Ma Y L, Lei B 2012 Chin Phys. B 21 124301
[2] Gac J L, Asch M, Stephan Y, Demoulin X 2003 IEEE J. Oceanic Engineer. 28 479
[3] Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303 (in Chinese) [戚聿波, 周士弘, 张仁和, 张波, 任云 2014 63 044303]
[4] Baraniuk R, Jones D 1995 IEEE Trans. Signal Proc. 43 2269
[5] Bonnel J, Nicolas B, Mars J I, Walker S C 2010 J. Acoust. Soc. Am. 128 719
[6] Bonnel J, Chapman N 2011 J. Acoust. Soc. Am. 130 EL101
[7] Lu L C, Ma L 2015 Acta Phys. Sin. 64 024305 (in Chinese) [鹿力成, 马力 2015 64 024305]
[8] Li Z L, Zhang R H 2007 Chin. Phys. Lett. 24 471
[9] Li Z L, Yan J, Li F H, Guo L H 2002 Acta Acoust. 27 487 (in Chinese) [李整林, 鄢锦, 李风华, 郭良浩 2002 声学学报 27 487]
[10] Zhang X L, Li Z L, Huang X D 2009 Acta Acoust. 34 54 (in Chinese) [张学磊, 李整林, 黄晓砥 2009 声学学报 34 54]
[11] Gerstoft P 1994 J. Acoust. Soc. Am. 95 770
[12] Gerstoft P, Mechlenbrauker C F 1998 J. Acoust. Soc. Am. 104 808
[13] Jensen F B, Kuperman W A, Porter M B, Schmidt H 2000 Computational Ocean Acoustics ( Vol. 2) (New York: American Institute of Physics) p67
[14] Tolstoy I, Clay C 1987 Theory and Experiment in Underwater Sound ( Vol. 2) (New York: Acoustical Society of American)
[15] Duda R O, Hart P E 1972 Commun ACM 15 11
[16] Fernandes L A F, Oliveira M M 2008 PRS 41 299
[17] Yang K D, Ma Y L, Sun C, Miller J H, Potty G R 2004 IEEE J. Oceanic Engineer. 29 964
[18] Juan Z, Chapman N, Bonnel J 2013 J. Acoust. Soc. Am. 134 394
[19] Hamilton E L 1980 J. Acoust. Soc. Am. 68 1313
[20] Zhou J X, Zhang X Z, Rogers P H, Jarzynski J 1987 J. Acoust. Soc. Am. 82 2068
[21] Stall R D, Houtz R E 1983 J. Acoust. Soc. Am. 73 163
[22] Zhang T W, Yang K D, Ma Y L, Li X G 2010 Acta Phys. Sin. 59 3294 (in Chinese) [张同伟, 杨坤德, 马远良, 黎雪刚 2010 59 3294]
Catalog
Metrics
- Abstract views: 6719
- PDF Downloads: 288
- Cited By: 0