搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西太平洋远距离声传播特性

毕思昭 彭朝晖 王光旭 谢志敏 张灵珊

引用本文:
Citation:

西太平洋远距离声传播特性

毕思昭, 彭朝晖, 王光旭, 谢志敏, 张灵珊

Characteristics of long-range sound propagation in western Pacific

Bi Sizhao, Peng Zhaohui, Xie Zhimin, Wang Guangxu, Zhang Lingshan
PDF
导出引用
  • 声信号在海水中能够进行上千公里的传播,远距离声传播存在不同于近距离传播的特性。本文利用西太平洋声源与接收最远距离近2000km的远距离水声实验数据,对实验海区的海洋环境信息、实验使用的接收垂直阵信息进行处理,分析大洋完全声道环境下,远距离声传播能量衰减规律和多途到达结构特性。在远距离传播能量衰减规律方面,随着传播距离增加,海水吸收对声能衰减的作用凸显,海水吸收系数的选取对声场能量预报的准确性至关重要。较低频信号海水吸收较小,中心频率100Hz的声信号,传播距离从1000km到2000km,传播损失仅增加6dB左右。深海声道远距离声传播多途到达结构特性方面,实验海区温跃层声速较高,使得到达接收点的本征声线数目更多,多途到达结构更复杂,海面反射声线形成的到达结构处在整体到达结构的靠前位置,且能量相对较强;受西北太平洋副热带模态水的影响,声速剖面存在双跃层结构,导致部分声线到达接收点的时间较早,多途到达结构在时间轴上的长度延长。
    Acoustic signals can travel thousands of kilometers in seawater, and the characteristics of long-range sound propagation are different from short range propagation. This paper is based on a long-range underwater acoustic experiment data carried in the western Pacific Ocean, whose farthest propagation distance is nearly 2000km. The ocean environment information and vertical line array information are carefully processed. We analyze the attenuation in the seawater of long-distance acoustic propagation and multi-path arrival structure characteristics under the complete acoustic channel environment of the ocean. In terms of the attenuation law of long-distance propagation energy, with the increase of propagation distance, the effect of seawater absorption on the attenuation of sound energy becomes prominent, and the selection of absorption coefficient is very important for accurate prediction of sound field energy. Absorption in seawater of low frequency signals is small, and the transmission loss of acoustic signal with 100Hz center frequency only increases by about 6dB when the propagation distance is from 1000km to 2000km. In terms of multi-path arrival structure characteristics of deep-sea acoustic channel for long-distance sound propagation, the thermocline sound velocity profile in the experimental sea area has higher sound speed, which makes the number of eigenrays reaching the receiving point more and the multi-path arrival structure more complex. The arrival structure formed by sea surface reflected eigenrays is in the earlier position of the overall arrival structure and has relatively strong energy. Due to the influence of subtropical water over the northwest Pacific Ocean on the sound speed profile, the time of some eigenrays arriving at the receiving point is earlier, and the length of multi-way arrival structure on the time axis is prolonged.
  • [1]

    Worcester P F, Cornuelle B D, Hildebrand J A, Hodgkiss W, Spindel R C 1994 J. Acoust. Soc. Am. 95 3118

    [2]

    Worcester P F, Cornuelle B D, Dzieciuch M A, Munk W H, Howe B M, Mercer J A, Spindel R C, Colosi J A, Metzger K, Birdsall T G 1999 J. Acoust. Soc. Am 105 3185

    [3]

    Colosi J 2004 J. Acoust. Soc. Am 116 1538

    [4]

    Vera M, Heaney K D 2005 J. Acoust. Soc. Am 117 1624

    [5]

    Mercer J A, Colosi J A, Howe B M, Dzieciuch M A, Stephen R 2009 IEEE J. Oceanic.Eng. 34 1

    [6]

    Worcester P F, Dzieciuch M A, Mercer J A, Andrew R K, Dushaw B D, Baggeroer A B, Heaney K D, D"Spain G L, Colosi J A, Stephen R A 2013 J. Acoust. Soc. Am 134 3359

    [7]

    Li-Li WU, Zhao-Hui PENG 2015 Chin. Phys. Lett 32 9

    [8]

    Guthrie A N 1974 J. Acoust. Soc. Am 56 58

    [9]

    Beilis A 1983 J. Acoust. Soc. Am 68 171

    [10]

    Boyles C A 1978 J. Acoust. Soc. Am 64 S74

    [11]

    张仁和, 何怡1994自然科学进展:国家重点实验室通讯 6 32

    Zhang R H, He Y 1994 Progress in Natural Science. 6 32

    [12]

    Colosi J A, Scheer E K, Flatté S, Cornuelle B D, Dzieciuch M A, Munk W H, Worcester P F, Howe B M, Mercer J A, Spindel R C 1999 J. Acoust. Soc. Am 105 3202

    [13]

    Uffelen L V, Worcester P F, Dzieciuch M A, Rudnick D L 2009 J. Acoust. Soc. Am 125 3569

    [14]

    Uffelen L V, Worcester P F, Dzieciuch M A, Rudnick D L, Colosi J A 2010 J. Acoust. Soc. Am 127 2169

    [15]

    Kim H J 2009 Ph. D. Dissertation (Boston: Massachusetts Institute of Technolog

    [16]

    Locarnini R A, Mishonov A V, Baranova O K, Boyer T P, Zweng M M, Garcia H E, Reagan J R, Seidov D, Weathers K, Paver C R, Smolyar I 2018 World Ocean Atlas 2018, Volume 1: Temperature. 81 p52

    [17]

    Zweng M M, Reagan J R, Seidov D, Boyer T P, Locarnini R A, Garcia H E, Mishonov A V, Baranova O K, Weathers K, Paver C R, Smolyar I 2018 World Ocean Atlas 2018, Volume 2: Salinity. 82 p50

    [18]

    Gandin L S 1963 Objective Analysis of Meteorological Fields (Translated from the Russian.) p184

    [19]

    Amante C, Eakins B W. 2009 Psychologist 16 3

    [20]

    Bershad, Susanne, Martin W. 1976 NOAA National Centers for Environmental Information.

    [21]

    Straume E O, Gaina C, Medvedev S, Hochmuth K, Gohl K, Whittaker J M, Abdul Fattah R, Doornenbal J C, Hopper J R 2019 Geochem Geophy Geosy 20 4

    [22]

    Collins M 1998 J.acoust.soc.Am 93 1736

    [23]

    Jensen F, Kuperman W, Porter M, Schmidt H 2011

    [24]

    Fisher, H. F 1977 J. Acoust. Soc. Am 62 13

    [25]

    Lovett, Jack R 1980 J. Acoust. Soc. Am 67 338

    [26]

    Munk W H 1974 J. Acoust. Soc. Am 55 220

  • [1] 康娟, 彭朝晖, 何利, 李晟昊, 于小涛. 基于多层水平变化浅海海底模型的低频反演方法.  , doi: 10.7498/aps.73.20231715
    [2] 马树青, 郭肖晋, 张理论, 蓝强, 黄创霞. 水声射线传播的黎曼几何建模·应用 —深海远程声传播会聚区黎曼几何模型.  , doi: 10.7498/aps.72.20221495
    [3] 毕思昭, 彭朝晖, 王光旭, 谢志敏, 张灵珊. 西太平洋远距离声传播特性.  , doi: 10.7498/aps.71.20220566
    [4] 刘代, 李整林, 刘若芸. 浅海周期起伏海底环境下的声传播.  , doi: 10.7498/aps.70.20201233
    [5] 刘今, 彭朝晖, 张灵珊, 刘若芸, 李整林. 浅海涌浪对表面声道声传播的影响.  , doi: 10.7498/aps.70.20201549
    [6] 朴胜春, 栗子洋, 王笑寒, 张明辉. 深海不完整声道下反转点会聚区研究.  , doi: 10.7498/aps.70.20201375
    [7] 毕思昭, 彭朝晖. 地球曲率对远距离声传播的影响.  , doi: 10.7498/aps.70.20201858
    [8] 姚美娟, 鹿力成, 孙炳文, 郭圣明, 马力. 浅海起伏海面下气泡层对声传播的影响.  , doi: 10.7498/aps.69.20191208
    [9] 乔厚, 何锃, 张恒堃, 彭伟才, 江雯. 二维含多孔介质周期复合结构声传播分析.  , doi: 10.7498/aps.68.20190164
    [10] 李梦竹, 李整林, 周纪浔, 张仁和. 一种低声速沉积层海底参数声学反演方法.  , doi: 10.7498/aps.68.20190183
    [11] 张鹏, 李整林, 吴立新, 张仁和, 秦继兴. 深海海底反射会聚区声传播特性.  , doi: 10.7498/aps.68.20181761
    [12] 范雨喆, 陈宝伟, 李海森, 徐超. 丛聚的含气泡水对线性声传播的影响.  , doi: 10.7498/aps.67.20180728
    [13] 张春玲, 刘文武. 基于绝热捷径快速实现远距离的四维纠缠态的制备.  , doi: 10.7498/aps.67.20180315
    [14] 胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利. 深海海底斜坡环境下的声传播.  , doi: 10.7498/aps.65.014303
    [15] 张莉, 郑海洋, 王颖萍, 丁蕾, 方黎. 远距离探测拉曼光谱特性.  , doi: 10.7498/aps.65.054206
    [16] 谢磊, 孙超, 刘雄厚, 蒋光禹. 陆架斜坡海域声场特性对常规波束形成阵增益的影响.  , doi: 10.7498/aps.65.144303
    [17] 郭晓乐, 杨坤德, 马远良. 一种基于简正波模态频散的远距离宽带海底参数反演方法.  , doi: 10.7498/aps.64.174302
    [18] 王勇, 林书玉, 张小丽. 含气泡液体中的非线性声传播.  , doi: 10.7498/aps.63.034301
    [19] 周振凯, 韦利明, 丰杰. ZnO/Diamond/Si结构中声表面波传播特性分析.  , doi: 10.7498/aps.62.104601
    [20] 印娟, 钱勇, 李晓强, 包小辉, 彭承志, 杨涛, 潘阁生. 远距离量子通信实验中的高维纠缠源.  , doi: 10.7498/aps.60.060308
计量
  • 文章访问数:  2312
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2022-08-01

/

返回文章
返回
Baidu
map