-
Aiming at the passive impulse wideband source range problem in shallow water waveguides, a passive source range method with single hydrophone based on the matched mode processing is presented in this paper, the method is applied to the shallow water waveguide with a bottom of liquid semi-infinite space. Warping transformation is a useful tool to separate the normal modes of the received signals of the impulse source, and the frequency domain signals of each order can be obtained. The seafloor phase shift parameter is an important parameter describing the acoustic parameters of the seafloor, which contains nearly all the information about sea floor, what is more, the seafloor phase shift parameter is also an parameter that can be obtained by some experimental data easily. Each order normal mode can be represented by the expression that contains the phase shift parameter of sea floor. What is more, the influence of sound speed profile of the waveguide on eigenvalue can be approximately eliminated by jointly processing arbitrary two-order normal modes. Sound speed profile has a similar influence on eigenvalue of each order normal mode, therefore, the difference in the eigenvalues between arbitrary two-order normal modes can be approximated represented by the phase shift parameter of the sea-floor, the sea depth and the mean speed in the waveguide. In this way, the phase replica which consists of the eigenvalue difference of each two-order mode can be calculated simply and quickly, and then by constructing cost function and matching normal mode, the underwater impulse source can be located. Compared with the traditional method of processing matched mode and the method of processing matched fields, the method presented in this paper has two advantages: using warping transformation instead of hydrophone arrays to separate the normal modes; the replica can be calculated quickly and easily, depending on a small number of environmental parameters of waveguide. The effectiveness and accuracy of the method are proved by the results of numerical simulation and sea experimental data processing, in which the signals are both received by a single hydrophone. The sea experimental data contain linear frequency modulation impulse source signal and explosion sound source signal, and the mean relative error of range estimation is less than 10%. In the end of this paper, the range estimation error is analyzed, indicating that the error originates mainly from the mode phase parts besides the phase part of Hankel function. Consequently, finding the ways to reduce the range estimation error is an important project in the future.
-
Keywords:
- shallow water waveguide /
- phase shift parameter /
- matched mode /
- passive range
[1] Huang Y W 2005 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [黄益旺 2005 博士学位论文 (哈尔滨: 哈尔滨工程大学)]
[2] Yang T C 1990 J. Acoust. Soc. Am. 87 2072
[3] Yao M J, Lu L C, Ma L, Guo S M 2016 Acta Acust. 41 73 (in Chinese) [姚美娟, 鹿力成, 马力, 郭圣明 2016 声学学报 41 73]
[4] Gary R W, Robert A K, Paul J V 1988 J. Acoust. Soc. Am. 84 310
[5] Lu I T, Chen H Y, Voltz P 1993 J. Acoust. Soc. Am. 93 1365
[6] Collison N E, Dosso S E 2000 J. Acoust. Soc. Am. 107 3089
[7] Barbara N, Grgoire L T, Jrme I 2008 IEEE ICASSP 56 2437
[8] Chen H Y, Lu I T 1992 J. Acoust. Soc. Am. 92 2039
[9] Yang T C 1989 J. Acoust. Soc. Am. 85 146
[10] Yang T C 2014 J. Acoust. Soc. Am. 135 1218
[11] Wang H Z, Wang N, Gao D Z, Gao B 2016 Chin. Phys. Lett. 33 044301
[12] Li Q Q 2016 Chin. Phys. Lett. 33 034301
[13] Li Q Q, Li Z L, Zhang R H 2013 Chin. Phys. Lett. 30 024301
[14] Peng Z H, Li Z L, Wang G X 2010 Chin. Phys. Lett. 27 114303
[15] Zhao Z D, Wang N, Gao D, Wang H Z 2010 Chin. Phys. Lett. 27 064301
[16] Guo X L, Yang K D, Ma Y L, Yang Q L 2016 Acta Phys. Sin. 65 214302 (in Chinese) [郭晓乐, 杨坤德, 马远良, 杨秋龙 2016 65 214302]
[17] Bonnel J, Chapman N R 2011 J. Acoust. Soc. Am. 130 101
[18] Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303 (in Chinese) [戚聿波, 周士弘, 张仁和, 张波, 任云 2014 63 044303]
[19] Bonnel J, Aaron M T, Susanna B B, Katherine K, Michael A 2014 J. Acoust. Soc. Am. 136 145
[20] Liu B S, Lei J Y 2010 Theory of UnderwaterAcoustics (2nd Ed.) (Harbin: Harbin Engineering University Press) pp24-30 (in Chinese) [刘伯胜, 雷家煜 2010 水声学原理(第二版) (哈尔滨: 哈尔滨工程大学出版社)第2430页]
[21] Wang D Z, Shang E C 2009 Underwater Acoustics (2nd Ed.) (Harbin: Harbin Engineering University Press) pp628-640 (in Chinese) [汪德昭, 尚尔昌 2009 水声学(第二版) (哈尔滨: 哈尔滨工程大学出版社)第628640页]
[22] Jensen F B, Kuperman W A, Porter M B, Schmidt H 1994 Computational Ocean Acoustics (New York: American Institute of Physics Press) pp87-92
[23] Bonnel J, Gervaise C, Nicolas B, Mars J I 2010 J. Acoust. Soc. Am. 128 719
[24] Baraniuk R, Jones D 1995 IEEE Trans. Signal Proc. 43 2269
[25] Touze G L, Nicolas B, Mars J I 2009 IEEE Trans. Signal Proc. 57 1783
[26] Niu H Q 2014 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [牛海强 2014 博士学位论文 (北京: 中国科学院大学)]
[27] Yang S E 2009 Theory of Underwater Sound Propagation (Harbin: Harbin Engineering University Press) pp49-55
[28] Shang E C, Wu J R, Zhao Z D 2012 J. Acoust. Soc. Am. 131 3691
[29] Wang D, Guo L H, Liu J J, Qi Y B 2016 Acta Phys. Sin. 65 104302 (in Chinese) [王冬, 郭良浩, 刘建军, 戚聿波 2016 65 104302]
[30] Kevin L C, Henrik S 2011 J. Acoust. Soc. Am. 130 72
-
[1] Huang Y W 2005 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [黄益旺 2005 博士学位论文 (哈尔滨: 哈尔滨工程大学)]
[2] Yang T C 1990 J. Acoust. Soc. Am. 87 2072
[3] Yao M J, Lu L C, Ma L, Guo S M 2016 Acta Acust. 41 73 (in Chinese) [姚美娟, 鹿力成, 马力, 郭圣明 2016 声学学报 41 73]
[4] Gary R W, Robert A K, Paul J V 1988 J. Acoust. Soc. Am. 84 310
[5] Lu I T, Chen H Y, Voltz P 1993 J. Acoust. Soc. Am. 93 1365
[6] Collison N E, Dosso S E 2000 J. Acoust. Soc. Am. 107 3089
[7] Barbara N, Grgoire L T, Jrme I 2008 IEEE ICASSP 56 2437
[8] Chen H Y, Lu I T 1992 J. Acoust. Soc. Am. 92 2039
[9] Yang T C 1989 J. Acoust. Soc. Am. 85 146
[10] Yang T C 2014 J. Acoust. Soc. Am. 135 1218
[11] Wang H Z, Wang N, Gao D Z, Gao B 2016 Chin. Phys. Lett. 33 044301
[12] Li Q Q 2016 Chin. Phys. Lett. 33 034301
[13] Li Q Q, Li Z L, Zhang R H 2013 Chin. Phys. Lett. 30 024301
[14] Peng Z H, Li Z L, Wang G X 2010 Chin. Phys. Lett. 27 114303
[15] Zhao Z D, Wang N, Gao D, Wang H Z 2010 Chin. Phys. Lett. 27 064301
[16] Guo X L, Yang K D, Ma Y L, Yang Q L 2016 Acta Phys. Sin. 65 214302 (in Chinese) [郭晓乐, 杨坤德, 马远良, 杨秋龙 2016 65 214302]
[17] Bonnel J, Chapman N R 2011 J. Acoust. Soc. Am. 130 101
[18] Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303 (in Chinese) [戚聿波, 周士弘, 张仁和, 张波, 任云 2014 63 044303]
[19] Bonnel J, Aaron M T, Susanna B B, Katherine K, Michael A 2014 J. Acoust. Soc. Am. 136 145
[20] Liu B S, Lei J Y 2010 Theory of UnderwaterAcoustics (2nd Ed.) (Harbin: Harbin Engineering University Press) pp24-30 (in Chinese) [刘伯胜, 雷家煜 2010 水声学原理(第二版) (哈尔滨: 哈尔滨工程大学出版社)第2430页]
[21] Wang D Z, Shang E C 2009 Underwater Acoustics (2nd Ed.) (Harbin: Harbin Engineering University Press) pp628-640 (in Chinese) [汪德昭, 尚尔昌 2009 水声学(第二版) (哈尔滨: 哈尔滨工程大学出版社)第628640页]
[22] Jensen F B, Kuperman W A, Porter M B, Schmidt H 1994 Computational Ocean Acoustics (New York: American Institute of Physics Press) pp87-92
[23] Bonnel J, Gervaise C, Nicolas B, Mars J I 2010 J. Acoust. Soc. Am. 128 719
[24] Baraniuk R, Jones D 1995 IEEE Trans. Signal Proc. 43 2269
[25] Touze G L, Nicolas B, Mars J I 2009 IEEE Trans. Signal Proc. 57 1783
[26] Niu H Q 2014 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [牛海强 2014 博士学位论文 (北京: 中国科学院大学)]
[27] Yang S E 2009 Theory of Underwater Sound Propagation (Harbin: Harbin Engineering University Press) pp49-55
[28] Shang E C, Wu J R, Zhao Z D 2012 J. Acoust. Soc. Am. 131 3691
[29] Wang D, Guo L H, Liu J J, Qi Y B 2016 Acta Phys. Sin. 65 104302 (in Chinese) [王冬, 郭良浩, 刘建军, 戚聿波 2016 65 104302]
[30] Kevin L C, Henrik S 2011 J. Acoust. Soc. Am. 130 72
Catalog
Metrics
- Abstract views: 6380
- PDF Downloads: 282
- Cited By: 0