Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of triple bandpass frequency selective surface in terahertz wave band for radio astronomy

Liu Hai-Wen Zhan Xin Ren Bao-Ping

Citation:

Design of triple bandpass frequency selective surface in terahertz wave band for radio astronomy

Liu Hai-Wen, Zhan Xin, Ren Bao-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A single screen terahertz frequency selective surface (FS) using the improved split ring resonators (SRRs) is designed in this paper. The resonance unit of an improved SRR consists of an open seam metal patch, while the physical size of the open seam metal patch will directly affect the stepped impedance characteristics. In the paper, LC equivalent circuit model for the improved SRR unit structure is established to extract the equivalent circuit model parameters. Then the relationship between the fundamental frequency of the FSS formula and the harmonics is obtained from the basic theory of the transmission line. Compared to the traditional uniform SRR, the control of multi-band in the improved SRR is more flexible. It is an outstanding characteristic for multi-band FSS design. Based on this characteristic, the triple-band terahertz FSS centered at 0.46, 0.86 and 1.03 THz respectively is designed successively, which can be used in radio astronomy application. By using HFSS 13.0 electromagnetic software simulation, many important indicators such as the key parameters that affect the transmission characteristics of the FSS, periodic intervals, miniaturization degree and the sensitivity of the incidence angle have been studied and analyzed. Both the theoretical analysis and simulated results demonstrate the validity of the method. The triple-band FSS using the improved SRR has a lot of reformative performances. It is shown that the reflection coefficients of triple-band FSS using the improved SRR are -37.6 dB, -13 dB, and -19.6 dB, respectively. On the other hand, it owns the stable frequency response characteristics in the 0°–60° range, which is beneficial to a large incidence angle. In addition, a high degree of miniaturization and the low loss characteristics are the another two significant advantages of this FSS. This triple-band FSS with improved SRR has potential applications in the terahertz frequency radio astronomy polarizer, beam splitter, mirror and resonator mirror, etc.
      Corresponding author: Liu Hai-Wen, liuhaiwen@gmail.com
    • Funds: Project supported by the National Science Foundation of China, (Grant No. 61461020, U1431110), and the International Cooperation Funds and Science and Technology Innovation Team of Jiangxi Province of China (Grant Nos. 20133BDH80007, 20132BDH80013).
    [1]

    Raymond D, Robert C, Vincent F, Harold S G, Neil M 2011 IEEE Trans. Terahertz Sci. Technol. 1 450

    [2]

    Huang H Y, Ding S, Wang B Z, Zang R 2014 Chin. Phys. B 23 064101

    [3]

    Leng W X, Ge L N, Xu S S, Zhan H L, Zhao K 2014 Chin. Phys. B 23 107804

    [4]

    Li S S, Zhang H, Hou Y, Bai J J, Liu W W, Chang S J 2013 Applied Optics 52 3305

    [5]

    Carelli P, Chiarello F, Cibella S, Di G A, Leoni R, Ortolani M, Torrioli G 2012 J Infrared Milli Terahz Waves 33 505

    [6]

    Yuan C, Xu S L, Yao J Q, Zhao X L, Cao X L, Wu L 2014 Chin. Phys. B 23 018102

    [7]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [8]

    Wang W J, Wangle J F, Yan M B, Lu L, Ma H, Qu S B, Chen H Y, Xu C L 2014 Acta Phys. Sin. 63 174101 (in Chinese) [王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲. 2014 63 174101]

    [9]

    Goussetis G, Feresidis A P 2010 IET Microw. Antennas Propag. 4 1105

    [10]

    Campos A L P S, Segundo F C G D S, Manicoba R H C, Neto G A, Assuncao A G D 2012 Microwave Opt Technol Lett. 54 2321

    [11]

    Ohira M, Deguchi H, Tsuji M, Shigesawa H 2004 IEEE Trans. Antennas Propagat. 52 2925

    [12]

    Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 237302 (in Chinese) [王秀芝, 高劲松, 徐念喜 2013 62 237302]

    [13]

    Dubrovka R, Vazquez J, Parini C, Moore D 2006 IEE Proc. Microwaves Antenn. Propag 153 213

    [14]

    Costa F, Monorchio A, Manara G 2012 IEEE Antenn. Propag. Mag. 54 35

    [15]

    Claus J, Niels A M, Anders K 2009 Appl. Phys. Lett. 95 193108

    [16]

    Wang H Q 2008 Systems Engineering and Electronics 30 2054 (in Chinese) [王焕青 2008 系统工程与电子技术 30 2054]

    [17]

    Munk B(translated by Hou X Y) 2009 A Frequency Selective Surfaces Theory and Design(Beijing: Science Press) pp688-695 (in Chinese) [Munk B著 (侯新宇译) 2009 频率选择表面理论与设计(北京: 科学出版社)第 688–695 页]

    [18]

    Wu Z, Wu Z B 2005 Acta Electron. Sin. 33 517 (in Chinese) [武哲, 武振波 2005 电子学报 33 517]

    [19]

    Yan S, Vandenbosch G A E 2013 Appl. Phys. Lett. 102 103503

  • [1]

    Raymond D, Robert C, Vincent F, Harold S G, Neil M 2011 IEEE Trans. Terahertz Sci. Technol. 1 450

    [2]

    Huang H Y, Ding S, Wang B Z, Zang R 2014 Chin. Phys. B 23 064101

    [3]

    Leng W X, Ge L N, Xu S S, Zhan H L, Zhao K 2014 Chin. Phys. B 23 107804

    [4]

    Li S S, Zhang H, Hou Y, Bai J J, Liu W W, Chang S J 2013 Applied Optics 52 3305

    [5]

    Carelli P, Chiarello F, Cibella S, Di G A, Leoni R, Ortolani M, Torrioli G 2012 J Infrared Milli Terahz Waves 33 505

    [6]

    Yuan C, Xu S L, Yao J Q, Zhao X L, Cao X L, Wu L 2014 Chin. Phys. B 23 018102

    [7]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [8]

    Wang W J, Wangle J F, Yan M B, Lu L, Ma H, Qu S B, Chen H Y, Xu C L 2014 Acta Phys. Sin. 63 174101 (in Chinese) [王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲. 2014 63 174101]

    [9]

    Goussetis G, Feresidis A P 2010 IET Microw. Antennas Propag. 4 1105

    [10]

    Campos A L P S, Segundo F C G D S, Manicoba R H C, Neto G A, Assuncao A G D 2012 Microwave Opt Technol Lett. 54 2321

    [11]

    Ohira M, Deguchi H, Tsuji M, Shigesawa H 2004 IEEE Trans. Antennas Propagat. 52 2925

    [12]

    Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 237302 (in Chinese) [王秀芝, 高劲松, 徐念喜 2013 62 237302]

    [13]

    Dubrovka R, Vazquez J, Parini C, Moore D 2006 IEE Proc. Microwaves Antenn. Propag 153 213

    [14]

    Costa F, Monorchio A, Manara G 2012 IEEE Antenn. Propag. Mag. 54 35

    [15]

    Claus J, Niels A M, Anders K 2009 Appl. Phys. Lett. 95 193108

    [16]

    Wang H Q 2008 Systems Engineering and Electronics 30 2054 (in Chinese) [王焕青 2008 系统工程与电子技术 30 2054]

    [17]

    Munk B(translated by Hou X Y) 2009 A Frequency Selective Surfaces Theory and Design(Beijing: Science Press) pp688-695 (in Chinese) [Munk B著 (侯新宇译) 2009 频率选择表面理论与设计(北京: 科学出版社)第 688–695 页]

    [18]

    Wu Z, Wu Z B 2005 Acta Electron. Sin. 33 517 (in Chinese) [武哲, 武振波 2005 电子学报 33 517]

    [19]

    Yan S, Vandenbosch G A E 2013 Appl. Phys. Lett. 102 103503

  • [1] Huang Ruo-Tong, Li Jiu-Sheng. Terahertz multibeam modulation reflection-coded metasurface. Acta Physica Sinica, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [2] Yang Dong-Ru, Cheng Yong-Zhi, Luo Hui, Chen Fu, Li Xiang-Cheng. Double-split-ring structure based ultra-broadband and ultra-thin dual-polarization terahertz metasurface with half-reflection and half-transmission. Acta Physica Sinica, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [3] Ge Hong-Yi, Li Li, Jiang Yu-Ying, Li Guang-Ming, Wang Fei, Lü Ming, Zhang Yuan, Li Zhi. Double-opening metal ring based terahertz metamaterial absorber sensor. Acta Physica Sinica, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [4] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [5] Yan Hao-Lan, Cheng Ya-Qing, Wang Kai-Li, Wang Ya-Xin, Chen Yang-Wei, Yuan Qiu-Lin, Ma Heng. Terahertz wave absorption for alkylcyclohexyl-isothiocyanatobenzene liquid crystal materials. Acta Physica Sinica, 2019, 68(11): 116102. doi: 10.7498/aps.68.20190209
    [6] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [7] Zhou Kang, Li Hua, Wan Wen-Jian, Li Zi-Ping, Cao Jun-Cheng. Group velocity dispersion analysis of terahertz quantum cascade laser frequency comb. Acta Physica Sinica, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [8] Zhou Lu, Zhao Guo-Zhong, Li Xiao-Nan. Broadband terahertz vortex beam generation based on metasurface of double-split resonant rings. Acta Physica Sinica, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [9] Fu Ya-Nan, Zhang Xin-Qun, Zhao Guo-Zhong, Li Yong-Hua, Yu Jia-Yi. A broadband polarization converter based on resonant ring in terahertz region. Acta Physica Sinica, 2017, 66(18): 180701. doi: 10.7498/aps.66.180701
    [10] Zhang Xue-Jin, Lu Yan-Qing, Chen Yan-Feng, Zhu Yong-Yuan, Zhu Shi-Ning. Terahertz surface polaritons. Acta Physica Sinica, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [11] Guo Chang, Zhang Yan. Super diffraction imaging with wave vector selective metasurface. Acta Physica Sinica, 2017, 66(14): 147804. doi: 10.7498/aps.66.147804
    [12] Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang. Multifunctional metasurfaces for terahertz polarization controller. Acta Physica Sinica, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [13] Lan Feng, Gao Xi, Qi Li-Mei. Terahertz bandpass filter using double-layer reformative complementary frequency selective surface structures. Acta Physica Sinica, 2014, 63(10): 104209. doi: 10.7498/aps.63.104209
    [14] Xia Bu-Gang, Zhang De-Hai, Meng Jin, Zhao Xin. Restrain the spurious resonance of second-order fractal frequency selective surface in MMW band. Acta Physica Sinica, 2013, 62(17): 174103. doi: 10.7498/aps.62.174103
    [15] Wang Xiu-Zhi, Gao Jin-Song, Xu Nian-Xi. Design and study of the dual-band frequency-selective surface operation at Ku/Ka-band. Acta Physica Sinica, 2013, 62(16): 167307. doi: 10.7498/aps.62.167307
    [16] Dai Yu-Han, Chen Xiao-Lang, Zhao Qiang, Zhang Ji-Hua, Chen Hong-Wei, Yang Chuan-Ren. Tunable split ring resonators in terahertz band. Acta Physica Sinica, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [17] Han Yu, Yuan Xue-Song, Ma Chun-Yan, Yan Yang. Study of a gyrotron oscillator with corrugated interaction cavity. Acta Physica Sinica, 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [18] Li Lei, Zhou Qing-Li, Shi Yu-Lei, Zhao Dong-Mei, Zhang Cun-Lin, Zhao Kun, Tian Lu, Zhao Hui, Bao Ri-Ma, Zhao Song-Qing. The influence of different opening shapes of split-ring resonator on its transmittance in terahertz band. Acta Physica Sinica, 2011, 60(1): 019503. doi: 10.7498/aps.60.019503
    [19] Gao Jin-Song, Wang Shan-Shan, Feng Xiao-Guo, Xu Nian-Xi, Zhao Jing-Li, Chen Hong. Design and study of second-order Y-loop frequency selective surfaces. Acta Physica Sinica, 2010, 59(10): 7338-7343. doi: 10.7498/aps.59.7338
    [20] Zhang Fu-Li, Zhao Xiao-Peng. Tunable split ring resonator and its effect. Acta Physica Sinica, 2007, 56(8): 4661-4667. doi: 10.7498/aps.56.4661
Metrics
  • Abstract views:  6822
  • PDF Downloads:  206
  • Cited By: 0
Publishing process
  • Received Date:  22 November 2014
  • Accepted Date:  23 March 2015
  • Published Online:  05 September 2015

/

返回文章
返回
Baidu
map