搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于频率选择表面的双层改进型互补结构太赫兹带通滤波器研究

兰峰 高喜 亓丽梅

引用本文:
Citation:

基于频率选择表面的双层改进型互补结构太赫兹带通滤波器研究

兰峰, 高喜, 亓丽梅

Terahertz bandpass filter using double-layer reformative complementary frequency selective surface structures

Lan Feng, Gao Xi, Qi Li-Mei
PDF
导出引用
  • 通过仿真计算和实验研究了一种基于频率选择表面的双层改进型互补结构太赫兹带通滤波器. 对四裂缝互补型电感电容式谐振单元结构进行了改进,可以在提高滤波性能的同时增加单晶石英介质衬底的厚度.利用电磁仿真技术设计并加工了中心频率为0.28 THz的带通滤波器,并利用太赫兹时域光谱仪测试了在0.1–0.6 THz范围内此滤波器的传输频谱特性,实验结果与仿真结果基本一致. 结果表明,利用双层改进型互补结构可以设计出对于入射角度不敏感、带外抑制佳、边带陡峭度大、能有效抑制寄生谐振的宽带太赫兹带通滤波器,并降低了加工难度.
    The simulation and experimental study of a bandpass frequency selective surface filter in terahertz (THz) range using double-layer modified complementary structures are conducted in this paper. The modified four-split complementary electric inductive capacitive (CELC) structure is introduced as the resonant cell of the filter. The primary design objective is to improve the filtering performances of double-layer complementary metamaterial structures built on intensified thickening quartz substrate. The bandpass filter centered at 0.28 THz is simulated, fabricated and measured. Experimental results from 0.1 to 0.6 THz measured by THz time-domain spectroscopy are in excellent agreement with simulation. The reformative CELC bandpass filter has the advantages of a low cost, low loss, steepness of skirts, out-of-band rejection, and etalon resonance rejection.
    • 基金项目: 国家自然科学基金(批准号:11075032)和国家高技术研究发展计划(批准号:2011AA010204)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11075032) and the National High Technology Research and Development Program of China (Grant No. 2011AA010204).
    [1]

    De Lucia F C 2002 IEEE MTT-S Int. Microw. Symp. Dig. 3 1579

    [2]

    Siegel P H 2004 IEEE Trans. Microw. Theory Tech. 52 2438

    [3]

    Yeh T, Genovesi S, Monorchio A, Prati E, Costa F, Huang T, Yen T 2012 Opt. Express 20 7580

    [4]

    Chen H M, Meng Q 2011 Acta Phys. Sin. 60 014202 (in Chinese) [陈鹤鸣, 孟晴 2011 60 014202]

    [5]

    Christian D, Peter H B 2007 Conference on Lasers and Electro-Optics Baltimore, USA, May 6-11, 2007 p1

    [6]

    Yong M, Khalid'S C S A, James P G, David R S C 2010 IEEE Photonics Society Winter Topicals Meeting Series Majorca, Spain, January 11-13, 2010 p50

    [7]

    Dobroiu A, Otani C, Kawase K 2006 Meas. Sci. Technol. 17 R161

    [8]

    Kemp M C, Taday P F, Cole B E, Cluff J A, Fitzgerald A J, Tribe W R 2003 Proc. SPIE 5070 44

    [9]

    Varittha S, Niru K N, John L V 2013 Proceedings of the 2012 IEEE National Aerospace and Electronics Conference Dayton, USA, July 25-27, 2012 p38

    [10]

    So J K, Seo M A, Kim D S, Kim J H, Chang S S, Son J, Park G S 2008 33rd International Conference on Infrared and Millimeter Waves and the 16th International Conference on Terahertz Electronics Pasadena, USA, September 15-19, 2008, p1

    [11]

    Meng K, Wang Y H, Chen L W, Zhang Y 2008 Acta Phys. Sin. 57 3198 (in Chinese) [孟阔, 王艳花, 陈龙旺, 张岩 2008 57 3198]

    [12]

    Winnewisser C, Lewen F, Weinzierl J, Helm H 1998 IEEE Sixth International Conference on Terahertz Electronics Proceedings Terahertz Electronics Proceedings Leeds, UK, September 3-4, 1998 p196

    [13]

    Hansen V, Gemuend H P, Kreysa E 2005 Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics New York, USA, September 19-23, 2005 p209

    [14]

    Chen H T, O'Hara J F, Taylor A J, Averitt R D, Highstrete C, Lee M, Padilla W J 2007 Opt. Express 15 1084

    [15]

    Born M, Wolf E 1999 Principles of Optics (7th ed) (Cambridge: Cambridge University Press) pp821-823

    [16]

    Lu M Z, Li W Z, Elliott R B 2011 Opt. Lett. 36 1071

    [17]

    Vardaxoglou J C 1997 Frequency Selective Surfaces: Analysis and Design (New York: John Wiley) pp1-9

    [18]

    Ben A M A 2000 Frequency Selective Surface-Theory and Design (New York: Wiley-Interscience Publication) pp21-27

    [19]

    Subash V, Yanhan Z, Ayrton B, Mohammad S 2012 IEEE Trans. THz Technol. 2 441

    [20]

    Wu Z, Wu Z B 2005 Acta Electron. Sin. 33 517 (in Chinese) [武哲, 武振波 2005电子学报 33 517]

    [21]

    Deng H Q, Huang J, Li G 2012 J. Microwaves 28 (S1) 139 (in Chinese) [邓鹤栖, 黄建, 李光 2012 微波学报 28 (S1) 139]

  • [1]

    De Lucia F C 2002 IEEE MTT-S Int. Microw. Symp. Dig. 3 1579

    [2]

    Siegel P H 2004 IEEE Trans. Microw. Theory Tech. 52 2438

    [3]

    Yeh T, Genovesi S, Monorchio A, Prati E, Costa F, Huang T, Yen T 2012 Opt. Express 20 7580

    [4]

    Chen H M, Meng Q 2011 Acta Phys. Sin. 60 014202 (in Chinese) [陈鹤鸣, 孟晴 2011 60 014202]

    [5]

    Christian D, Peter H B 2007 Conference on Lasers and Electro-Optics Baltimore, USA, May 6-11, 2007 p1

    [6]

    Yong M, Khalid'S C S A, James P G, David R S C 2010 IEEE Photonics Society Winter Topicals Meeting Series Majorca, Spain, January 11-13, 2010 p50

    [7]

    Dobroiu A, Otani C, Kawase K 2006 Meas. Sci. Technol. 17 R161

    [8]

    Kemp M C, Taday P F, Cole B E, Cluff J A, Fitzgerald A J, Tribe W R 2003 Proc. SPIE 5070 44

    [9]

    Varittha S, Niru K N, John L V 2013 Proceedings of the 2012 IEEE National Aerospace and Electronics Conference Dayton, USA, July 25-27, 2012 p38

    [10]

    So J K, Seo M A, Kim D S, Kim J H, Chang S S, Son J, Park G S 2008 33rd International Conference on Infrared and Millimeter Waves and the 16th International Conference on Terahertz Electronics Pasadena, USA, September 15-19, 2008, p1

    [11]

    Meng K, Wang Y H, Chen L W, Zhang Y 2008 Acta Phys. Sin. 57 3198 (in Chinese) [孟阔, 王艳花, 陈龙旺, 张岩 2008 57 3198]

    [12]

    Winnewisser C, Lewen F, Weinzierl J, Helm H 1998 IEEE Sixth International Conference on Terahertz Electronics Proceedings Terahertz Electronics Proceedings Leeds, UK, September 3-4, 1998 p196

    [13]

    Hansen V, Gemuend H P, Kreysa E 2005 Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics New York, USA, September 19-23, 2005 p209

    [14]

    Chen H T, O'Hara J F, Taylor A J, Averitt R D, Highstrete C, Lee M, Padilla W J 2007 Opt. Express 15 1084

    [15]

    Born M, Wolf E 1999 Principles of Optics (7th ed) (Cambridge: Cambridge University Press) pp821-823

    [16]

    Lu M Z, Li W Z, Elliott R B 2011 Opt. Lett. 36 1071

    [17]

    Vardaxoglou J C 1997 Frequency Selective Surfaces: Analysis and Design (New York: John Wiley) pp1-9

    [18]

    Ben A M A 2000 Frequency Selective Surface-Theory and Design (New York: Wiley-Interscience Publication) pp21-27

    [19]

    Subash V, Yanhan Z, Ayrton B, Mohammad S 2012 IEEE Trans. THz Technol. 2 441

    [20]

    Wu Z, Wu Z B 2005 Acta Electron. Sin. 33 517 (in Chinese) [武哲, 武振波 2005电子学报 33 517]

    [21]

    Deng H Q, Huang J, Li G 2012 J. Microwaves 28 (S1) 139 (in Chinese) [邓鹤栖, 黄建, 李光 2012 微波学报 28 (S1) 139]

  • [1] 王芳, 张龙, 马涛, 王旭, 刘玉芳, 马春旺. 一种低损耗的对称双楔形太赫兹混合表面等离子体波导.  , 2020, 69(7): 074205. doi: 10.7498/aps.69.20191666
    [2] 郭畅, 张岩. 利用波矢滤波超表面实现超衍射成像.  , 2017, 66(14): 147804. doi: 10.7498/aps.66.147804
    [3] 刘超, 裴丽, 吴良英, 王一群, 翁思俊, 余少伟. 基于光纤叠栅的全光纤声光可调谐滤波器的特性分析.  , 2015, 64(17): 174207. doi: 10.7498/aps.64.174207
    [4] 惠忆聪, 王春齐, 黄小忠. 基于电阻型频率选择表面的宽带雷达超材料吸波体设计.  , 2015, 64(21): 218102. doi: 10.7498/aps.64.218102
    [5] 张建, 高劲松, 徐念喜, 于淼. 基于混合周期栅网结构的频率选择表面设计研究.  , 2015, 64(6): 067302. doi: 10.7498/aps.64.067302
    [6] 刘海文, 占昕, 任宝平. 射电天文用太赫兹三通带频率选择表面设计.  , 2015, 64(17): 174103. doi: 10.7498/aps.64.174103
    [7] 王岩松, 高劲松, 徐念喜, 汤洋, 陈新. 具有陡降特性的新型混合单元频率选择表面.  , 2014, 63(7): 078402. doi: 10.7498/aps.63.078402
    [8] 王秀芝, 高劲松, 徐念喜. Ku/Ka波段双通带频率选择表面设计研究.  , 2013, 62(16): 167307. doi: 10.7498/aps.62.167307
    [9] 张建, 高劲松, 徐念喜. 光学透明频率选择表面的设计研究.  , 2013, 62(14): 147304. doi: 10.7498/aps.62.147304
    [10] 刘明, 徐小峰, 王永良, 曾佳, 李华, 邱阳, 张树林, 张国峰, 孔祥燕, 谢晓明. 超导量子干涉器件读出电路中匹配变压器的传输特性研究.  , 2013, 62(18): 188501. doi: 10.7498/aps.62.188501
    [11] 王秀芝, 高劲松, 徐念喜. 利用集总LC元件实现频率选择表面极化分离的特性.  , 2013, 62(14): 147307. doi: 10.7498/aps.62.147307
    [12] 焦健, 徐念喜, 冯晓国, 梁凤超, 赵晶丽, 高劲松. 基于互补屏的主动频率选择表面设计研究.  , 2013, 62(16): 167306. doi: 10.7498/aps.62.167306
    [13] 唐光明, 苗俊刚, 董金明. 一种介质-金属加载圆孔单元厚屏频率选择表面.  , 2012, 61(6): 068402. doi: 10.7498/aps.61.068402
    [14] 陈新, 高劲松, 徐念喜, 王岩松, 冯晓国. 电介质桁架对频率选择表面传输特性的影响.  , 2012, 61(21): 217307. doi: 10.7498/aps.61.217307
    [15] 吴翔, 裴志斌, 屈绍波, 徐卓, 柏鹏, 王甲富, 王新华, 周航. 具有极化选择特性的超材料频率选择表面的设计.  , 2011, 60(11): 114201. doi: 10.7498/aps.60.114201
    [16] 汪剑波, 卢俊. 双屏频率选择表面结构的遗传算法优化.  , 2011, 60(5): 057304. doi: 10.7498/aps.60.057304
    [17] 蒙志君, 王立峰, 吕明云, 武哲. 曲率对有限曲面狭缝阵列传输特性的影响.  , 2011, 60(1): 017301. doi: 10.7498/aps.60.017301
    [18] 王豆豆, 王丽莉. 新型光学聚合物——Topas环烯烃共聚物微结构光纤的设计及特性分析.  , 2010, 59(5): 3255-3259. doi: 10.7498/aps.59.3255
    [19] 方春易, 张树仁, 卢俊, 汪剑波, 孙连春. 一种圆孔单元厚屏频率选择表面结构的传输特性研究.  , 2010, 59(7): 5023-5027. doi: 10.7498/aps.59.5023
    [20] 李小秋, 冯晓国, 高劲松. 光学透明频率选择表面的研究.  , 2008, 57(5): 3193-3197. doi: 10.7498/aps.57.3193
计量
  • 文章访问数:  6750
  • PDF下载量:  1352
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-04
  • 修回日期:  2014-01-10
  • 刊出日期:  2014-05-05

/

返回文章
返回
Baidu
map