Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phasic discharge characteristics in high power pulsed magnetron sputtering

Wu Zhong-Zhen Tian Xiu-Bo Li Chun-Wei Ricky K. Y. Fu Pan Feng

Citation:

Phasic discharge characteristics in high power pulsed magnetron sputtering

Wu Zhong-Zhen, Tian Xiu-Bo, Li Chun-Wei, Ricky K. Y., Fu, Pan Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As one of the burgeoning physical vapor deposition (PVD) techniques, high power pulsed magnetron sputtering (HPPMS), which boasts high ionization rates of sputtered materials and does not suffer from macro-particles, has been investigated extensively recently. Herein, a new method to break down the discharge current into different characteristic components is employed to study the changes of the various parameters as the target voltage is increased at different pressure. Results show a phasic HPPMS discharge when the target voltage is increased, exhibiting an alternate rise of the peak and the platform of the target current. A small change at the discharge stage is observed with increasing pressure, and some stages are missing in some instances. Five discharge stages are found to correspond to the discharge of Ar atoms, Cr atoms, Ar ions, Cr ions, as well as multiply-charged Ar and Cr ions, respectively, according to the optical emission spectra obtained from the HPPMS discharge plasma. Adjacent discharge stages are also found to overlap under certain discharge conditions.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51301004, U1330110), the China Postdoctoral Science Foundation (Grant No. 2013M530010), and the State Key Lab of Advanced Welding and Joining, Harbin Institute of Technology, China (Grant No. AWJ-M13-13).
    [1]

    Tian M B 2006 Thin Film Technologies and Materials (Beijing: Tsinghua University Press) p445 (in Chinese)[田民波2006薄膜技术与薄膜材料(北京: 清华大学出版社)第445页]

    [2]

    Yang D, Zhong N, Shang H L, Sun S Y, Li G Y 2013 Acta Phys. Sin. 62 36801 (in Chinese)[杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬 2013 62 36801]

    [3]
    [4]
    [5]

    Wang Y J, Li H X, Ji L, Liu X H, Wu Y X, Zhou H D, Chen J M 2012 Chin. Phys. B 21 016101

    [6]

    Posadowski W M 1995 Vacuum 46 1017

    [7]
    [8]
    [9]

    Xu J, Ma T C, Lu W Q, Xia Y L, Deng X L 2000 Chin. Phys. Lett. 17 586

    [10]

    Kouznetsov V, Maca'k K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290

    [11]
    [12]

    Yukimura K, Ehiasarian A P 2010 IEEE Trans. Plasma Sci. 11 3005

    [13]
    [14]
    [15]

    Bohlmark J, Gudmundsson J T, IEEE M, Alami J, Latteman M, Helmersson U 2005 IEEE Trans. Plasma Sci. 33 346

    [16]
    [17]

    Bohlmark J, Alami J, Christou C, Ehiasarian A P, Helmersson U 2005 J. Vac. Sci. Technol. A 23 18

    [18]

    Mu Z X, Mu X D, Wang C, Jia L, Dong C 2011 Acta Phys. Sin. 60 15204 (in Chinese)[牟宗信, 牟晓东, 王春, 贾莉, 董闯 2011 60 15204]

    [19]
    [20]

    Anders A, Andersson J Ehiasarian A P 2007 J. Appl. Phys. 102 113303

    [21]
    [22]

    Wang T, Jiang Y D, Yu H, Wu Z M, Zhao H N 2011 Chin. Phys. B 20 038101

    [23]
    [24]

    Magnus F, Sveinsson O B, Olafsson S Gudmundsson J T 2011 J. Appl. Phys. 110 083306

    [25]
    [26]

    Duan W Z 2010 Master Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)[段伟赞2010 硕士学位论文(哈尔滨: 哈尔滨工业大学)]

    [27]
    [28]

    Tian X B, Wu Z Z, Shi J W, Li X P, Gong C Z, Yang S Q 2010 Chin. Vac. 47 44 (in Chinese)[田修波, 吴忠振, 石经纬, 李希平, 巩春志, 杨士勤 2010 真空 47 44]

    [29]
    [30]
    [31]

    Du Y Q, Liu W Y, Zhu A M, Li X S, Zhao T L, Liu Y X, Gao F, Xu Y, Wang Y N 2013 Acta Phys. Sin. 62 205208 (in Chinese)[杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年 2013 62 205208]

    [32]

    Li Y P, Liu Z T 2009 Acta Phys. Sin. 58 5022 (in Chinese)[李阳平, 刘正堂 2009 58 5022]

    [33]
    [34]
    [35]

    Ma J, Pu Y K 2003 Chin. Phys. Lett. 20 1527

    [36]
    [37]

    Gao F, Li X C, Zhao S X, Wang Y N 2012 Chin. Phys. B 21 075203

    [38]

    Ehiasarian A P, New R, M. unz W-D, Hultman L, Helmersson U, Kouznetsov V 2002 Vacuum 65 147

    [39]
    [40]

    Ehiasarian A P, Gonzalvo Y A, Whitmore T D 2007 Plasma Processes Polym. 4 S309

    [41]
    [42]
    [43]

    Wu Z Z, Tian X B, Duan W Z, Gong C Z, Yang S Q 2010 Chin. J. Mater. Res. 24 561 (in Chinese)[吴忠振, 田修波, 段伟赞, 巩春志, 杨士勤 2010 材料研究学报 24 561]

    [44]
    [45]

    Oks E, Anders A 2009 J. Appl. Phys. 105 09330401

    [46]

    Carsten E, George C, Chan G, Buscher W, Hieftje G M 2008 Spectrochim. Acta, Part B 7 619

    [47]
    [48]
    [49]

    Horwat D, Anders A 2008 J. Phys. D: Appl. Phys. 41 135210

    [50]
    [51]

    Andersson J, Ehiasarian A P, Anders A 2008 Appl. Phys. Lett. 93 071504

    [52]

    Benzeggouta D, Hugon M C, Bretagne J, Ganciu M 2009 Plasma Sources Sci. Technol. 18 04502501

    [53]
    [54]

    Dunger T, Welzel T, Welzel S, Richter F 2005 Surf. Coat. Technol. 200 1676

    [55]
    [56]
    [57]

    Anders A 2008 Appl. Phys. Lett. 92 201501

    [58]
    [59]

    Kadlec S 2007 Plasma Processes Polym. 4 S419

  • [1]

    Tian M B 2006 Thin Film Technologies and Materials (Beijing: Tsinghua University Press) p445 (in Chinese)[田民波2006薄膜技术与薄膜材料(北京: 清华大学出版社)第445页]

    [2]

    Yang D, Zhong N, Shang H L, Sun S Y, Li G Y 2013 Acta Phys. Sin. 62 36801 (in Chinese)[杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬 2013 62 36801]

    [3]
    [4]
    [5]

    Wang Y J, Li H X, Ji L, Liu X H, Wu Y X, Zhou H D, Chen J M 2012 Chin. Phys. B 21 016101

    [6]

    Posadowski W M 1995 Vacuum 46 1017

    [7]
    [8]
    [9]

    Xu J, Ma T C, Lu W Q, Xia Y L, Deng X L 2000 Chin. Phys. Lett. 17 586

    [10]

    Kouznetsov V, Maca'k K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290

    [11]
    [12]

    Yukimura K, Ehiasarian A P 2010 IEEE Trans. Plasma Sci. 11 3005

    [13]
    [14]
    [15]

    Bohlmark J, Gudmundsson J T, IEEE M, Alami J, Latteman M, Helmersson U 2005 IEEE Trans. Plasma Sci. 33 346

    [16]
    [17]

    Bohlmark J, Alami J, Christou C, Ehiasarian A P, Helmersson U 2005 J. Vac. Sci. Technol. A 23 18

    [18]

    Mu Z X, Mu X D, Wang C, Jia L, Dong C 2011 Acta Phys. Sin. 60 15204 (in Chinese)[牟宗信, 牟晓东, 王春, 贾莉, 董闯 2011 60 15204]

    [19]
    [20]

    Anders A, Andersson J Ehiasarian A P 2007 J. Appl. Phys. 102 113303

    [21]
    [22]

    Wang T, Jiang Y D, Yu H, Wu Z M, Zhao H N 2011 Chin. Phys. B 20 038101

    [23]
    [24]

    Magnus F, Sveinsson O B, Olafsson S Gudmundsson J T 2011 J. Appl. Phys. 110 083306

    [25]
    [26]

    Duan W Z 2010 Master Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)[段伟赞2010 硕士学位论文(哈尔滨: 哈尔滨工业大学)]

    [27]
    [28]

    Tian X B, Wu Z Z, Shi J W, Li X P, Gong C Z, Yang S Q 2010 Chin. Vac. 47 44 (in Chinese)[田修波, 吴忠振, 石经纬, 李希平, 巩春志, 杨士勤 2010 真空 47 44]

    [29]
    [30]
    [31]

    Du Y Q, Liu W Y, Zhu A M, Li X S, Zhao T L, Liu Y X, Gao F, Xu Y, Wang Y N 2013 Acta Phys. Sin. 62 205208 (in Chinese)[杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年 2013 62 205208]

    [32]

    Li Y P, Liu Z T 2009 Acta Phys. Sin. 58 5022 (in Chinese)[李阳平, 刘正堂 2009 58 5022]

    [33]
    [34]
    [35]

    Ma J, Pu Y K 2003 Chin. Phys. Lett. 20 1527

    [36]
    [37]

    Gao F, Li X C, Zhao S X, Wang Y N 2012 Chin. Phys. B 21 075203

    [38]

    Ehiasarian A P, New R, M. unz W-D, Hultman L, Helmersson U, Kouznetsov V 2002 Vacuum 65 147

    [39]
    [40]

    Ehiasarian A P, Gonzalvo Y A, Whitmore T D 2007 Plasma Processes Polym. 4 S309

    [41]
    [42]
    [43]

    Wu Z Z, Tian X B, Duan W Z, Gong C Z, Yang S Q 2010 Chin. J. Mater. Res. 24 561 (in Chinese)[吴忠振, 田修波, 段伟赞, 巩春志, 杨士勤 2010 材料研究学报 24 561]

    [44]
    [45]

    Oks E, Anders A 2009 J. Appl. Phys. 105 09330401

    [46]

    Carsten E, George C, Chan G, Buscher W, Hieftje G M 2008 Spectrochim. Acta, Part B 7 619

    [47]
    [48]
    [49]

    Horwat D, Anders A 2008 J. Phys. D: Appl. Phys. 41 135210

    [50]
    [51]

    Andersson J, Ehiasarian A P, Anders A 2008 Appl. Phys. Lett. 93 071504

    [52]

    Benzeggouta D, Hugon M C, Bretagne J, Ganciu M 2009 Plasma Sources Sci. Technol. 18 04502501

    [53]
    [54]

    Dunger T, Welzel T, Welzel S, Richter F 2005 Surf. Coat. Technol. 200 1676

    [55]
    [56]
    [57]

    Anders A 2008 Appl. Phys. Lett. 92 201501

    [58]
    [59]

    Kadlec S 2007 Plasma Processes Polym. 4 S419

  • [1] Gao Jian-Ying, Li Yu-Ge, Lei Ming-Kai. Plasma characteristics in deep oscillation magnetron sputtering of chromium target. Acta Physica Sinica, 2024, 73(16): 165201. doi: 10.7498/aps.73.20240364
    [2] Huang Jiu-Huan, Gao Fei, Wang You-Nian. Effect of pressure on discharge mode transition in radio-frequency capacitively coupled micro-beam plasmas. Acta Physica Sinica, 2021, 70(7): 075205. doi: 10.7498/aps.70.20201716
    [3] Zhang Ya-Rong, Han Qian-Han, Guo Ying, Zhang Jing, Shi Jian-Jun. Discharge characteristics and mechanism of plasma plume generated by atmospheric pulsed discharge. Acta Physica Sinica, 2021, 70(9): 095202. doi: 10.7498/aps.70.20202246
    [4] Li Ti-Jun, Cui Sui-Han, Liu Liang-Liang, Li Xiao-Yuan, Wu Zhong-Can, Ma Zheng-Yong, Ricky K. Y. Fu, Tian Xiu-Bo, Paul K. Chu, Wu Zhong-Zhen. Magnetic field optimization and high-power discharge characteristics of cylindrical sputtering cathode. Acta Physica Sinica, 2021, 70(4): 045202. doi: 10.7498/aps.70.20201540
    [5] Chen Chang-Zi, Ma Dong-Lin, Li Yan-Tao, Leng Yong-Xiang. Discharge model and plasma characteristics of high-power pulsed magnetron sputtering titanium target. Acta Physica Sinica, 2021, 70(18): 180701. doi: 10.7498/aps.70.20202050
    [6] Shen Yong-Qing, Zhang Zhi-Qiang, Liao Bin, Wu Xian-Ying, Zhang Xu, Hua Qing-Song, Bao Man-Yu. Tribocorrosion performance of Nitrogen-doped diamond like carbon coating by high power impulse magnetron sputtering technique. Acta Physica Sinica, 2020, 69(10): 108101. doi: 10.7498/aps.69.20200021
    [7] Cui Sui-Han, Wu Zhong-Zhen, Xiao Shu, Chen Lei, Li Ti-Jun, Liu Liang-Liang, Ricky K Y Fu, Tian Xiu-Bo, Paul K Chu, Tan Wen-Chang. Simulation study on plasma discharge and transport in cylindrical cathode controlled by expanding electromagnetic field. Acta Physica Sinica, 2019, 68(19): 195204. doi: 10.7498/aps.68.20190583
    [8] Hou Xing-Min, Zhang Cheng, Qiu Jin-Tao, Gu Jian-Wei, Wang Rui-Xue, Shao Tao. Properties of temporal X-ray in nanosecond-pulse discharges with a tube-to-plane gap at atmospheric pressure. Acta Physica Sinica, 2017, 66(10): 105204. doi: 10.7498/aps.66.105204
    [9] Cui Sui-Han, Wu Zhong-Zhen, Xiao Shu, Liu Liang-Liang, Zheng Bo-Cong, Lin Hai, Ricky K Y Fu, Tian Xiu-Bo, Paul K, Tan Wen-Chang, Pan Feng. Electromagnetic control and optimization of high power impulse magnetron sputtering discharges in cylindrical source. Acta Physica Sinica, 2017, 66(9): 095203. doi: 10.7498/aps.66.095203
    [10] Xiao Shu, Wu Zhong-Zhen, Cui Sui-Han, Liu Liang-Liang, Zheng Bo-Cong, Lin Hai, Ricky K Y Fu, Tian Xiu-Bo, Pan Feng, Paul K Chu. Cylindric high power impulse magnetron sputtering source and its discharge characteristics. Acta Physica Sinica, 2016, 65(18): 185202. doi: 10.7498/aps.65.185202
    [11] Wu Zhong-Zhen, Tian Xiu-Bo, Pan Feng, Ricky K. Y. Fu, Paul K. Chu. Enhanced discharge of high power pulsed magnetron sputtering coupling with high voltage. Acta Physica Sinica, 2014, 63(18): 185207. doi: 10.7498/aps.63.185207
    [12] Zhu Guo-Qiang, Jean-Pierre Boeuf, Li Jin-Xian. Effects of pressure and incident power on self-organization pattern structure during microwave breakdown in high pressure air. Acta Physica Sinica, 2012, 61(23): 235202. doi: 10.7498/aps.61.235202
    [13] Shen Xiang-Qian, Xie Quan, Xiao Qing-Quan, Chen Qian, Feng Yun. Computer simulation of the glow discharge characteristics in magnetron sputtering. Acta Physica Sinica, 2012, 61(16): 165101. doi: 10.7498/aps.61.165101
    [14] Guo Qing-Chao, Zhang Jia-Liang, Liu Li-Ying, Wang De-Zhen. Characterization on the temperature of radio frequency argon capacitive discharge mode transition at atmospheric pressure. Acta Physica Sinica, 2011, 60(2): 025207. doi: 10.7498/aps.60.025207
    [15] Wang Gan-Ping, Xiang Fei, Tan Jie, Cao Shao-Yun, Luo Min, Kang Qiang, Chang An-Bi. Investigation in discharge progress of a long pulse high power microwave-driven source. Acta Physica Sinica, 2011, 60(7): 072901. doi: 10.7498/aps.60.072901
    [16] Hao Yan-Peng, Yang Lin, Tu En-Lai, Chen Jian-Yang, Zhu Zhan-Wen, Wang Xiao-Lei. Experimental study on mode and mechanism of multi-pulse atmospheric-pressure glow discharges. Acta Physica Sinica, 2010, 59(4): 2610-2616. doi: 10.7498/aps.59.2610
    [17] Liu Zhi-Wen, Gu Jian-Feng, Fu Wei-Jia, Sun Cheng-Wei, Li Yong, Zhang Qing-Yu. Influence of working pressure on the crystallinity and growth behavior of ZnO films deposited by reactive radio-frequency magnetron sputtering. Acta Physica Sinica, 2006, 55(10): 5479-5486. doi: 10.7498/aps.55.5479
    [18] Wang Yan-Hui, Wang De-Zhen. Study on homogeneous multiple-pulse barrier discharge at atmospheric pressure. Acta Physica Sinica, 2005, 54(3): 1295-1300. doi: 10.7498/aps.54.1295
    [19] Wang Xin-Xin, Lu Ming-Ze, Pu Yi-Kang. Possibility of atmospheric pressure glow discharge in air. Acta Physica Sinica, 2002, 51(12): 2778-2785. doi: 10.7498/aps.51.2778
    [20] LOU QI-HONG. THE DELAY EFFECT OF PULSE AVALANCHE DISCHARGE PROCESSES OF XeCl LASER AT HIGH GAS PRESSURE. Acta Physica Sinica, 1985, 34(7): 960-963. doi: 10.7498/aps.34.960
Metrics
  • Abstract views:  6845
  • PDF Downloads:  693
  • Cited By: 0
Publishing process
  • Received Date:  14 March 2014
  • Accepted Date:  31 March 2014
  • Published Online:  05 September 2014

/

返回文章
返回
Baidu
map