Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation study on plasma discharge and transport in cylindrical cathode controlled by expanding electromagnetic field

Cui Sui-Han Wu Zhong-Zhen Xiao Shu Chen Lei Li Ti-Jun Liu Liang-Liang Ricky K Y Fu Tian Xiu-Bo Paul K Chu Tan Wen-Chang

Citation:

Simulation study on plasma discharge and transport in cylindrical cathode controlled by expanding electromagnetic field

Cui Sui-Han, Wu Zhong-Zhen, Xiao Shu, Chen Lei, Li Ti-Jun, Liu Liang-Liang, Ricky K Y Fu, Tian Xiu-Bo, Paul K Chu, Tan Wen-Chang
PDF
HTML
Get Citation
  • High-power impulse magnetron sputtering (HiPIMS) is a new magnetron sputtering technique which can produce high-density plasmas with a high ionization rate and prepare coatings with a good performance such as large density and high adhesion. To obtain stable discharge and universal materials’ ionization rates, a cylindrical cathode is proposed based on the hollow cathode effect. However, the unusual plasma transport results in a large loss of ions and a low deposition rate. To solve these problems, an expanding electromagnetic field is proposed to control the plasma transport in this work. The particle in cell/Monte Carlo collision (PIC/MCC) method and the plasma diffusion model are used to simulate the plasma transport in and out of the cylindrical cathode with different currents in the electromagnetic coils, respectively. The simulation results reveal that different electromagnetic fields can achieve different plasma density distributions, resulting in different accumulated positions and different diffusion paths. When the coil current is positive, the resistance to axial motion of electrons is small but the resistance to radial motion is large, so that the hollow cathode effect is weakened and the plasma beam tends to output uniformly. When the coil current is negative, the resistance to axial motion of electrons is large but the resistance to radial motion is small, so that the hollow cathode effect is enhanced and the plasma tends to gather on the central axis and then diffuses outward. To verify the simulation results, Ar/Cr HiPIMS discharge experiments are carried out with the cylindrical cathode in a homemade vacuum system. The experiment results indicate that the threshold voltage, the plasma flow shape, the optical emission spectrum (OES) intensity, and the deposition distribution are determined by the electromagnetic coil current. The variation tendency is in coincidence with the prediction of the simulation. Consequently, by adding an expanding electromagnetic field, the plasma discharge in the cylindrical cathode can be easily controlled and the deposition rate is greatly enhanced. This electromagnetic control strategy not only realizes the enhancement and effective control of plasma, but also improves the homogeneity and the deposition rate of the coatings, thus laying a foundation for the industrial application of HiPIMS.
      Corresponding author: Wu Zhong-Zhen, wuzz@pkusz.edu.cn
    • Funds: Project supported by the Science and Technology Research Foundation of Guangdong, China (Grant No. 2015B090927003), the Science and Technology Research Foundation of Shenzhen, China (Grant Nos. JCYJ20150828093127698, JCYJ20170306165240649), and the Innovation and Technology Foundation of Hong Kong, China (Grant No. ITS/452/17FP (CityU 9440179))
    [1]

    Kouznetsov V, Macák K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290Google Scholar

    [2]

    Bohlmark J, Alami J, Christou C, Ehiasarian A P, Helmersson U 2005 J. Vac. Sci. Technol., A 23 18Google Scholar

    [3]

    吴忠振, 田修波, 潘锋, 傅劲裕, 朱剑豪 2014 63 185207Google Scholar

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Phys. Sin. 63 185207Google Scholar

    [4]

    Anders A 2011 Surf. Coat. Technol. 20 S1Google Scholar

    [5]

    吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 金属学报 10 1279Google Scholar

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Meta. Sin. 10 1279Google Scholar

    [6]

    Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Technol. 205 591Google Scholar

    [7]

    Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 204 1661Google Scholar

    [8]

    Qin X, Ke P, Wang A, Kim K H 2013 Surf. Coat. Technol. 228 275Google Scholar

    [9]

    Olejníček J, Hubička Z, Kment Š 2013 Surf. Coat. Technol. 232 376Google Scholar

    [10]

    Holtzer N, Antonin O, Minea T, Marnieros S, Bouchier D 2014 Surf. Coat. Technol. 250 32Google Scholar

    [11]

    Oliveira J C, Fernandes F, Ferreira F, Cavaleiro A 2015 Surf. Coat. Technol. 264 140Google Scholar

    [12]

    Helmersson U 2011 Proceedings of 11th International Workshop on Plasma Based Ion Implantation & Deposition Harbin, October 8—12, 2011 p21

    [13]

    Čapek J, Hála M, Zabeida O, Klemberg-Sapieha J E, Martinu L 2012 J. Appl. Phys. 111 023301Google Scholar

    [14]

    Ehiasarian A P, New R, Münz W D, Hultman L, Helmersson U, Kouznetsov V 2002 Vacuum 65 147Google Scholar

    [15]

    段伟赞 2010 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Duan W Z 2010 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [16]

    肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪 2016 65 185202Google Scholar

    Xiao S, Wu Z Z, Cui S H, Liu L L, Zheng B C, Lin H, Fu J Y, Tian X B, Pan F, Chu P K 2016 Acta Phys. Sin. 65 185202Google Scholar

    [17]

    崔岁寒, 吴忠振, 肖舒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 朱剑豪, 谭文长, 潘锋, 2017 66 095203Google Scholar

    Cui S H, Wu Z Z, Xiao S, Liu L L, Zheng B C, Lin H, Fu Ricky K Y, Tian X B, Chu P K, Tan W C, Pan F, 2017 Acta Phys. Sin. 66 095203Google Scholar

    [18]

    赖建军, 余建华, 黄建军, 王新兵, 丘军林 2001 50 1528Google Scholar

    Lai J J, Yu J H, Huang J J, Wang X B, Qiu J L 2001 Acta Phys. Sin. 50 1528Google Scholar

    [19]

    Cui S H, Wu Z Z, Lin H, Xiao S, Zheng B C, Liu L L, An X K, Fu Ricky K Y, Tian X B, Tan W C, Chu P K 2019 J. Appl. Phys. 125 063302Google Scholar

    [20]

    Guillaumot A, Lapostolle F, Langlade C, Billard A, Oliveira J C, Cavaleiro A, Tixier D C 2010 IEEE Trans. Plasma Sci. 38 3040Google Scholar

    [21]

    Ma Q S, Li L H, Xu Y, Gu J B, Wang L, Xu Y 2017 Appl. Surf. Sci. 392 826Google Scholar

    [22]

    Li C W, Tian X B 2016 Rev. Sci. Instrum. 87 083507Google Scholar

    [23]

    Gangopadhyay S, Acharya R, Chattopadhyay A K, Paul S 2010 Vacuum 84 843Google Scholar

    [24]

    Wang P, Wang X, Chen Y, Zhang G, Liu W, Zhang J 2007 Appl. Surf. Sci. 253 3722Google Scholar

    [25]

    Bohlmark J, Östbye M, Lattemann M, Ljungcrantz H, Rosell T, Helmersson U 2006 Thin Solid Films 515 1928Google Scholar

    [26]

    Ganesan R, Akhavan B, Dong X, McKenzie D R, Bilek M M M 2018 Surf. Coat. Technol. 352 671Google Scholar

    [27]

    Kelly P J, Arnell R D 2000 Vacuum 56 159Google Scholar

    [28]

    Olaya J J, Rodil S E, Muhl S 2008 Thin Solid Films 516 8319Google Scholar

    [29]

    Anders A, Brown J 2011 IEEE Trans. Plasma Sci. 39 2528Google Scholar

    [30]

    Li C W, Tian X B, Gong C Z, Liu S X 2017 Vacuum 144 125Google Scholar

    [31]

    Dawson J M 1983 Rev. Mod. Phys. 5 5Google Scholar

    [32]

    Vahedi V, Surendra M 1995 Comput. Phys. Commun. 8 7Google Scholar

    [33]

    宮文英 2009 硕士学位论文 (成都: 电子科技大学)

    Gong W Y 2009 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [34]

    Liang M, He Y, Szott M M, McLain J T, Ruzic D N 2014 J. Appl. Phys. 115 223301Google Scholar

    [35]

    Kozak T, Vlcek J, Kos S 2013 J. Phys. D 46 105203Google Scholar

    [36]

    关奎之, 李云奇 1986 真空 23 37

    Guan K Z, Li Y Q 1986 Vaccum 23 37

    [37]

    王合英, 孙文博, 陈宜宝, 何元金 2008 物理实验 28 1Google Scholar

    Wang H Y, Sun W B, Chen Y B, He Y J 2008 Phys. Exp. 28 1Google Scholar

  • 图 1  筒形阴极及电磁线圈结构示意图

    Figure 1.  Schematic diagram of the cylindrical cathode and the electromagnetic coils.

    图 2  磁感线分布与电磁线圈电流的关系, 右侧为筒形阴极内的磁感线分布放大图 (a) 0 A; (b) 5 A; (c) 10 A; (d) 15 A; (e) –5 A; (f) –10 A; (g) –15 A. 图中紫色虚线为筒形阴极中央轴, 蓝色方框中的部分为筒形阴极的放大区域

    Figure 2.  The distribution of the magnetic induction line vs. the current in electromagnetic coils: (a) 0 A; (b) 5 A; (c) 10 A; (d) 15 A; (e) –5 A; (f) –10 A and (g) –15 A. The purple dotted line is the center axis of the cylindrical cathode and the magnified area of the cylindrical cathode is marked by the blue square.

    图 3  不同电磁线圈电流条件下筒形阴极内Ar+离子分布 (a) 0 A; (b) 5 A; (c) 10 A; (d) 15 A; (e) –5 A; (f) –10 A; (g) –15 A. 图中紫色虚线为中央旋转轴, 灰色区域为靶材, 蓝线为1×1017 m–3的密度等值线

    Figure 3.  The Ar+ ion distribution in the cylindrical cathode vs. the current in electromagnetic coils: (a) 0 A; (b) 5 A; (c) 10 A; (d) 15 A; (e) –5 A; (f) –10 A and (g) –15 A. The purple dotted line is the center axis of the cylindrical cathode, the gray square is the target and the blue line is the contour line of 1×1017 m–3.

    图 4  HiPIMS放电的起辉电压随电磁线圈电流的变化

    Figure 4.  Threshold voltage of HiPIMS discharge vs. the current in the electromagnetic coil.

    图 5  等离子体密度分布与电磁线圈电流的关系 (a) 0 A; (b) 5 A; (c) 10 A; (d) 15 A; (e) –5 A; (f) –10 A; (g) –15 A. 图中紫色虚线为中央旋转轴

    Figure 5.  The plasma density distribution vs. the current in electromagnetic coils: (a) 0 A; (b) 5 A; (c) 10 A; (d) 15 A; (e) –5 A; (f) –10 A and (g) –15 A. The purple dotted line is the center axis of the cylindrical cathode.

    图 6  沉积速率的空间分布 (a) 不同线圈电流下中央轴沉积速率随扩散距离的变化; (b) 不同线圈电流下距筒形阴极8 cm处截面上的沉积速率分布; (c) 线圈电流15 A时不同距离的截面上的沉积速率分布

    Figure 6.  Spatial distribution of the deposition rates: (a) Deposition rate on the central axis depends on the diffusion distance and the coil currents; (b) deposition rate at the distance of 8 cm from the cylindrical cathode at different coil currents; (c) deposition rate distribution at different distances from the cylindrical cathode when the coil current is 15 A.

    图 7  不同线圈电流时的等离子体束流辉光照片 (a) 线圈电流为正; (b) 线圈电流为负

    Figure 7.  The plasma flow pictures vs. the electromagnetic coil currents: (a) The coil current is positive; (b) the coil current is negative.

    图 8  不同的线圈电流时筒形阴极中央轴上的光谱强度

    Figure 8.  The OES intensity at the center axis of cylindrical cathode vs. the electromagnetic coil currents.

    图 9  (a)线圈电流为15 A时沉积速率的分布; (b)线圈电流为–15 A时沉积速率的分布

    Figure 9.  Distribution of the deposition rate when the electromagnetic coil current is (a) 15 A and (b) –15 A.

    表 1  Ar气放电的主要反应表

    Table 1.  The main reactions of simple Ar gas discharge.

    序号反应方程式反应能量/eV反应类型
    1$e + {\rm{Ar}} \to {\rm{A}}{{\rm{r}}^ + } + 2e$15.76电离
    2$e + {\rm{Ar}} \to {\rm{A}}{{\rm{r}}^m} + e$11.56激发
    3$e + {\rm{A}}{{\rm{r}}^m} \to {\rm{Ar}} + e$–11.56退激发
    4$e + {\rm{A}}{{\rm{r}}^m} \to {\rm{A}}{{\rm{r}}^ + } + 2e$4.2电离
    5$e + {\rm{Ar}} \to {\rm{Ar}} + e$——弹性
    6${\rm{Ar}} + {\rm{A}}{{\rm{r}}^ + } \to {\rm{Ar}} + {\rm{A}}{{\rm{r}}^ + }$——弹性
    7${\rm{Ar}} + {\rm{A}}{{\rm{r}}^ + } \to {\rm{A}}{{\rm{r}}^+} + {\rm{Ar}}$——电荷交换
    DownLoad: CSV

    表 2  靶面放电宽度和最大的等离子密度

    Table 2.  Target discharge width and maximum plasma density.

    电磁线圈
    电流/A
    靶面放电
    宽度/cm
    最大等离子体
    密度/m–3
    154.24.63×1018
    104.01.07×1019
    53.62.93×1019
    03.44.02×1019
    -52.96.80×1019
    -102.63.13×1019
    -152.37.41×1018
    DownLoad: CSV
    Baidu
  • [1]

    Kouznetsov V, Macák K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290Google Scholar

    [2]

    Bohlmark J, Alami J, Christou C, Ehiasarian A P, Helmersson U 2005 J. Vac. Sci. Technol., A 23 18Google Scholar

    [3]

    吴忠振, 田修波, 潘锋, 傅劲裕, 朱剑豪 2014 63 185207Google Scholar

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Phys. Sin. 63 185207Google Scholar

    [4]

    Anders A 2011 Surf. Coat. Technol. 20 S1Google Scholar

    [5]

    吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 金属学报 10 1279Google Scholar

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Meta. Sin. 10 1279Google Scholar

    [6]

    Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Technol. 205 591Google Scholar

    [7]

    Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 204 1661Google Scholar

    [8]

    Qin X, Ke P, Wang A, Kim K H 2013 Surf. Coat. Technol. 228 275Google Scholar

    [9]

    Olejníček J, Hubička Z, Kment Š 2013 Surf. Coat. Technol. 232 376Google Scholar

    [10]

    Holtzer N, Antonin O, Minea T, Marnieros S, Bouchier D 2014 Surf. Coat. Technol. 250 32Google Scholar

    [11]

    Oliveira J C, Fernandes F, Ferreira F, Cavaleiro A 2015 Surf. Coat. Technol. 264 140Google Scholar

    [12]

    Helmersson U 2011 Proceedings of 11th International Workshop on Plasma Based Ion Implantation & Deposition Harbin, October 8—12, 2011 p21

    [13]

    Čapek J, Hála M, Zabeida O, Klemberg-Sapieha J E, Martinu L 2012 J. Appl. Phys. 111 023301Google Scholar

    [14]

    Ehiasarian A P, New R, Münz W D, Hultman L, Helmersson U, Kouznetsov V 2002 Vacuum 65 147Google Scholar

    [15]

    段伟赞 2010 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Duan W Z 2010 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [16]

    肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪 2016 65 185202Google Scholar

    Xiao S, Wu Z Z, Cui S H, Liu L L, Zheng B C, Lin H, Fu J Y, Tian X B, Pan F, Chu P K 2016 Acta Phys. Sin. 65 185202Google Scholar

    [17]

    崔岁寒, 吴忠振, 肖舒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 朱剑豪, 谭文长, 潘锋, 2017 66 095203Google Scholar

    Cui S H, Wu Z Z, Xiao S, Liu L L, Zheng B C, Lin H, Fu Ricky K Y, Tian X B, Chu P K, Tan W C, Pan F, 2017 Acta Phys. Sin. 66 095203Google Scholar

    [18]

    赖建军, 余建华, 黄建军, 王新兵, 丘军林 2001 50 1528Google Scholar

    Lai J J, Yu J H, Huang J J, Wang X B, Qiu J L 2001 Acta Phys. Sin. 50 1528Google Scholar

    [19]

    Cui S H, Wu Z Z, Lin H, Xiao S, Zheng B C, Liu L L, An X K, Fu Ricky K Y, Tian X B, Tan W C, Chu P K 2019 J. Appl. Phys. 125 063302Google Scholar

    [20]

    Guillaumot A, Lapostolle F, Langlade C, Billard A, Oliveira J C, Cavaleiro A, Tixier D C 2010 IEEE Trans. Plasma Sci. 38 3040Google Scholar

    [21]

    Ma Q S, Li L H, Xu Y, Gu J B, Wang L, Xu Y 2017 Appl. Surf. Sci. 392 826Google Scholar

    [22]

    Li C W, Tian X B 2016 Rev. Sci. Instrum. 87 083507Google Scholar

    [23]

    Gangopadhyay S, Acharya R, Chattopadhyay A K, Paul S 2010 Vacuum 84 843Google Scholar

    [24]

    Wang P, Wang X, Chen Y, Zhang G, Liu W, Zhang J 2007 Appl. Surf. Sci. 253 3722Google Scholar

    [25]

    Bohlmark J, Östbye M, Lattemann M, Ljungcrantz H, Rosell T, Helmersson U 2006 Thin Solid Films 515 1928Google Scholar

    [26]

    Ganesan R, Akhavan B, Dong X, McKenzie D R, Bilek M M M 2018 Surf. Coat. Technol. 352 671Google Scholar

    [27]

    Kelly P J, Arnell R D 2000 Vacuum 56 159Google Scholar

    [28]

    Olaya J J, Rodil S E, Muhl S 2008 Thin Solid Films 516 8319Google Scholar

    [29]

    Anders A, Brown J 2011 IEEE Trans. Plasma Sci. 39 2528Google Scholar

    [30]

    Li C W, Tian X B, Gong C Z, Liu S X 2017 Vacuum 144 125Google Scholar

    [31]

    Dawson J M 1983 Rev. Mod. Phys. 5 5Google Scholar

    [32]

    Vahedi V, Surendra M 1995 Comput. Phys. Commun. 8 7Google Scholar

    [33]

    宮文英 2009 硕士学位论文 (成都: 电子科技大学)

    Gong W Y 2009 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [34]

    Liang M, He Y, Szott M M, McLain J T, Ruzic D N 2014 J. Appl. Phys. 115 223301Google Scholar

    [35]

    Kozak T, Vlcek J, Kos S 2013 J. Phys. D 46 105203Google Scholar

    [36]

    关奎之, 李云奇 1986 真空 23 37

    Guan K Z, Li Y Q 1986 Vaccum 23 37

    [37]

    王合英, 孙文博, 陈宜宝, 何元金 2008 物理实验 28 1Google Scholar

    Wang H Y, Sun W B, Chen Y B, He Y J 2008 Phys. Exp. 28 1Google Scholar

  • [1] Lü Cheng-Ye, Chen Ying-Wei, Xie Mu-Ting, Li Xue-Yang, Yu Hong-Yu, Zhong Yang, Xiang Hong-Jun. First-principles calculation method for periodic system under external electromagnetic field. Acta Physica Sinica, 2023, 72(23): 237102. doi: 10.7498/aps.72.20231313
    [2] Yin Jia-Peng, Liu Sheng-Guang. A single long electron bunch detect electromagnetic field evolution in laser plasma. Acta Physica Sinica, 2022, 71(1): 012901. doi: 10.7498/aps.71.20211374
    [3] Cui Sui-Han, Guo Yu-Xiang, Chen Qiu-Hao, Jin Zheng, Yang Chao, Wu Zhong-Can, Su Xiong-Yu, Ma Zheng-Yong, Tian Xiu-Bo, Wu Zhong-Zhen. Working principle and layout logic of closed magnetic field in sputtering. Acta Physica Sinica, 2022, 71(5): 055203. doi: 10.7498/aps.71.20211781
    [4] Zhu Hai-Long, Li Xue-Ying, Tong Hong-Hui. Three-dimensional numerical simulation of physical field distribution of radio frequency thermal plasma. Acta Physica Sinica, 2021, 70(15): 155202. doi: 10.7498/aps.70.20202135
    [5] An Xin-Lei, Qiao Shuai, Zhang Li. Dynamic response and control of neuros based on electromagnetic field theory. Acta Physica Sinica, 2021, 70(5): 050501. doi: 10.7498/aps.70.20201347
    [6] Wang Yan-Hong, Wang Lei, Wu Jing-Zhi. Nanoscale electromagnetic field interaction generated by microtubule vibration in neurons. Acta Physica Sinica, 2021, 70(15): 158703. doi: 10.7498/aps.70.20210421
    [7] Chen Chang-Zi, Ma Dong-Lin, Li Yan-Tao, Leng Yong-Xiang. Discharge model and plasma characteristics of high-power pulsed magnetron sputtering titanium target. Acta Physica Sinica, 2021, 70(18): 180701. doi: 10.7498/aps.70.20202050
    [8] Li Ti-Jun, Cui Sui-Han, Liu Liang-Liang, Li Xiao-Yuan, Wu Zhong-Can, Ma Zheng-Yong, Ricky K. Y. Fu, Tian Xiu-Bo, Paul K. Chu, Wu Zhong-Zhen. Magnetic field optimization and high-power discharge characteristics of cylindrical sputtering cathode. Acta Physica Sinica, 2021, 70(4): 045202. doi: 10.7498/aps.70.20201540
    [9] Shen Yong-Qing, Zhang Zhi-Qiang, Liao Bin, Wu Xian-Ying, Zhang Xu, Hua Qing-Song, Bao Man-Yu. Tribocorrosion performance of Nitrogen-doped diamond like carbon coating by high power impulse magnetron sputtering technique. Acta Physica Sinica, 2020, 69(10): 108101. doi: 10.7498/aps.69.20200021
    [10] Cui Sui-Han, Wu Zhong-Zhen, Xiao Shu, Liu Liang-Liang, Zheng Bo-Cong, Lin Hai, Ricky K Y Fu, Tian Xiu-Bo, Paul K, Tan Wen-Chang, Pan Feng. Electromagnetic control and optimization of high power impulse magnetron sputtering discharges in cylindrical source. Acta Physica Sinica, 2017, 66(9): 095203. doi: 10.7498/aps.66.095203
    [11] Xiao Shu, Wu Zhong-Zhen, Cui Sui-Han, Liu Liang-Liang, Zheng Bo-Cong, Lin Hai, Ricky K Y Fu, Tian Xiu-Bo, Pan Feng, Paul K Chu. Cylindric high power impulse magnetron sputtering source and its discharge characteristics. Acta Physica Sinica, 2016, 65(18): 185202. doi: 10.7498/aps.65.185202
    [12] Wu Zhong-Zhen, Tian Xiu-Bo, Pan Feng, Ricky K. Y. Fu, Paul K. Chu. Enhanced discharge of high power pulsed magnetron sputtering coupling with high voltage. Acta Physica Sinica, 2014, 63(18): 185207. doi: 10.7498/aps.63.185207
    [13] Wu Zhong-Zhen, Tian Xiu-Bo, Li Chun-Wei, Ricky K. Y., Fu, Pan Feng. Phasic discharge characteristics in high power pulsed magnetron sputtering. Acta Physica Sinica, 2014, 63(17): 175201. doi: 10.7498/aps.63.175201
    [14] Zhang Shao-Qing, Wu Qun. Distribution characteristics of lightning electromagnetic pulsed fields under the ground. Acta Physica Sinica, 2013, 62(2): 029202. doi: 10.7498/aps.62.029202
    [15] Zhu Yan-Wu, Shi Shun-Xiang, Liu Ji-Fang, Sun Yan-Ling. A full electromagnetic analysis of a filter substrate lens for spatiotemporal terahertz pulse shaping. Acta Physica Sinica, 2009, 58(2): 1042-1045. doi: 10.7498/aps.58.1042
    [16] Lou Zhi-Mei. Mei symmetry for two-dimensional charged particle in motion. Acta Physica Sinica, 2005, 54(3): 1015-1017. doi: 10.7498/aps.54.1015
    [17] Zhang Qin, Ban Chun-Yan, Cui Jian-Zhong, Ba Qi-Xian, Lu Gui-Min, Zhang Bei-Jiang. The forced solution mechanism of alloying agents of 7075 alloy as-cast ingot und er the effects of electromagnetic field. Acta Physica Sinica, 2003, 52(10): 2642-2648. doi: 10.7498/aps.52.2642
    [18] WU QI-XUE. DOUBLE-WAVE DESCRIPTION OF THE MOTION OF SPINNING ELECTRON IN BOTH ELECTROMAGNETIC FIELD AND TWO-DIMENSIONAL HARMONIC OSCILLATOR POTENTIAL FIELD. Acta Physica Sinica, 2000, 49(11): 2118-2122. doi: 10.7498/aps.49.2118
    [19] CHEN GUANG. CONFORMAL FLAT SPACE-TIME SOLUTIONS IN ELECTROMAGNETIC AND SCALAR THEORY. Acta Physica Sinica, 1999, 48(6): 992-994. doi: 10.7498/aps.48.992
    [20] LI JIAN-ZENG. HIGHER DIMENSIONAL VAIDYA-LIKE SPACE-TIME WITH ELECTROMAGNETIC FIELDS AND COSMOLOGICAL CONSTANT. Acta Physica Sinica, 1992, 41(9): 1389-1395. doi: 10.7498/aps.41.1389
Metrics
  • Abstract views:  12467
  • PDF Downloads:  119
  • Cited By: 0
Publishing process
  • Received Date:  22 April 2019
  • Accepted Date:  15 July 2019
  • Available Online:  01 October 2019
  • Published Online:  05 October 2019

/

返回文章
返回
Baidu
map