搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

筒形溅射阴极的磁场优化及其高功率放电特性研究

李体军 崔岁寒 刘亮亮 李晓渊 吴忠灿 马正永 傅劲裕 田修波 朱剑豪 吴忠振

引用本文:
Citation:

筒形溅射阴极的磁场优化及其高功率放电特性研究

李体军, 崔岁寒, 刘亮亮, 李晓渊, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振

Magnetic field optimization and high-power discharge characteristics of cylindrical sputtering cathode

Li Ti-Jun, Cui Sui-Han, Liu Liang-Liang, Li Xiao-Yuan, Wu Zhong-Can, Ma Zheng-Yong, Ricky K. Y. Fu, Tian Xiu-Bo, Paul K. Chu, Wu Zhong-Zhen
PDF
HTML
导出引用
  • 基于高功率脉冲磁控溅射(HiPIMS)技术开发的筒形溅射阴极, 配合电磁系统可有效地提升等离子体的输运效率. 然而电磁系统的引入反作用于筒内放电特性, 从而使靶面放电面积和放电强度无法同时维持. 鉴于此, 本文通过调整磁场布局, 研究了靶面切向(横向)磁场和法向(纵向)磁场对靶面放电的作用规律, 优化后靶面切向磁场分布更加均匀, 磁场强度高于40 mT的靶面区域占比由51%增至67%, 同时法向峰值强度外移, 强度由73 mT增至96 mT. 采用Ar/Cr体系放电发现:相同工艺条件下, 优化后的溅射阴极辉光变亮, 靶电流增大, 放电面积变宽, 放电特性得到显著提升. 利用等离子体整体模型仿真和发射光谱仪检测发现优化后离子电流和光谱强度得到明显提升, Cr粒子密度提高一倍, 增至2.6 × 1020 m–3, 且离化率上升至92.1%, 同时输出离子通量提高近一倍, 实现了靶面放电与离子输出的双促进.
    High-power pulsed magnetron sputtering (HiPIMS) can produce high density and high adhesion coatings due to the high ionization. However, industrial application of HiPIMS is limited because of the unstable discharge and small deposition rate. A cylindrical cathode, developed on the basis of hollow cathode effect, can improve the discharge stability. With the development of electromagnetic systems, the plasma transport is improved, and thus increasing the deposition rate significantly. However, the introduction of electromagnetic system leads the strong discharge and large etching area on the target to be incompatibly controlled. In this work, the distribution of the tangential and longitudinal magnetic field on the target surface are improved by adding external magnets, and their effects on the plasma discharge are studied. By optimizing the magnets, the tangential magnetic field on the target surface becomes stronger and more uniform. Meanwhile, the peak of the longitudinal magnetic field increases from 73 to 96 mT and the peak location expands to two-sides of the cathode. The simulation result shows that the target etching area described by the proportion of the target area with the tangential magnetic field intensity higher than 40 mT increases from 51% to 67%, and the HiPIMS discharge studied by the particle in cell/Monte Carlo collision (PIC/MCC) method and plasma global model shows that the ion current and spectral intensity are significantly enhanced, exhibiting a doubled Cr density of 2.6 × 1020 m–3 and an increased ionization from 90% to 92.1%. The practical Ar/Cr HiPIMS discharge is carried out separately with the original and optimized cylindrical cathode, and the results reveal that the brightness of plasma glow, the target current and the etching area all increase after the improvement. Furthermore, the ion current and the optical emission spectrum suggest that the flux of ions arriving at the substrate is approximately doubled, which means that an about doubled deposition rate of the optimized cathode is achievable.
      通信作者: 吴忠振, wuzz@pkusz.edu.cn
    • 基金项目: 博士后创新人才支持计划(批准号: BX20190001)、香港城市大学策略研究基金(批准号: 7005264)和粤港科技合作资助计划(TCFS)(批准号: GHP/085/18SZ)资助的课题.
      Corresponding author: Wu Zhong-Zhen, wuzz@pkusz.edu.cn
    • Funds: Project supported by the Postdoctoral Innovative Talent Support Program, China (Grant No. BX20190001), City University of Hong Kong Strategic Research Grant (SRG) (Grant No. 7005264), and Guangdong-Hong Kong Technology Cooperation Funding Scheme (TCFS) (Grant No. GHP/085/18SZ).
    [1]

    Bohlmark J, Alami J, Christou C, Ehiasarian A P, Helmersson U 2005 J. Vac. Sci. Technol. A23 18Google Scholar

    [2]

    吴忠振, 田修波, 潘锋, 傅劲裕, 朱剑豪 2014 63 185207Google Scholar

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Phys. Sin. 63 185207Google Scholar

    [3]

    Fernandes F, Calderon V S, Ferreira P J, Cavaleiro A, Oliveira J C 2020 Surf. Coat. Technol. 397 125996Google Scholar

    [4]

    Yang F C, Lin C Y, Tang J F, Chang C L 2020 Surf. Coat. Technol. 388 125579Google Scholar

    [5]

    Liu L L, Tang W, Zhou L, Wu Z C, Ruan Q D, Li X Y, Qasim A M, Wu Z Z, Chu P K 2020 Ceram Int. 46 10814Google Scholar

    [6]

    Anders A 2011 Surf. Coat. Technol. 205 S1Google Scholar

    [7]

    Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Technol. 205 591Google Scholar

    [8]

    肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪 2016 65 185202Google Scholar

    Xiao S, Wu Z Z, Cui S H, Liu L L, Zheng B C, Lin H, Fu J Y, Tian X B, Pan F, Chu P K 2016 Acta Phys. Sin. 65 185202Google Scholar

    [9]

    崔岁寒, 吴忠振, 肖舒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 朱剑豪, 谭文长, 潘锋 2017 66 095203Google Scholar

    Cui S H., Wu Z Z, Xiao S, Liu L L, Zheng B C, Lin H, Fu Ricky K Y, Tian X B, Chu P K, Tan W C, Pan F 2017 Acta Phys. Sin. 66 095203Google Scholar

    [10]

    崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长 2019 68 195204Google Scholar

    Cui S H., Wu Z Z, Lin H, Xiao S, Chen L, Li T J, Liu L L, Fu R K Y, Tian X B, Chu P K, Tan W C 2019 Acta Phys. Sin. 68 195204Google Scholar

    [11]

    汪天龙, 邱清泉, 靖立伟, 张小波 2018 67 070703Google Scholar

    Wang T L, Qiu Q Q, Jing L W, Zhang X B 2018 Acta Phys. Sin. 67 070703Google Scholar

    [12]

    Mishra A, Kelly P J, Bradley J W 2010 Plasma Sources Sci. Technol. 19 045014Google Scholar

    [13]

    Luo H, Gao F, Billard A 2019 Surf. Coat. Technol. 374 822Google Scholar

    [14]

    Mischker F, Prenzel M, Benedikt J, et al. 2013 J. Phys. D: Appl. Phys. 46 495201Google Scholar

    [15]

    Čapek J, Hála M, Zabeida O, Klemberg-Sapieha J E, Martinu L 2012 J. Appl. Phys. 111 023301Google Scholar

    [16]

    Ganesan R, Akhavan B, Dong X, McKenzie D R, Bilek M M M 2018 Surf. Coat. Technol. 352 671Google Scholar

    [17]

    赖建军, 余建华, 黄建军, 王新兵, 丘军林 2001 50 1528Google Scholar

    Lai J J, Yu J H, Huang J J, Wang X B, Qiu J L 2001 Acta Phys. Sin. 50 1528Google Scholar

    [18]

    Cui S H, Wu Z Z, Lin H, Xiao S, Zheng B C, Chen L, Li T J, Fu R K Y, Chu P K, Tian X B, Tan W C, Fang D N, Pan F 2020 J. Appl. Phys. 127 23301Google Scholar

    [19]

    Dawson J M 1983 Rev. Mod. Phys. 5 5Google Scholar

    [20]

    Vahedi V, Surendra M 1995 Comput. Phys. Commun. 8 7Google Scholar

    [21]

    Liebig B, Bradley J W 2013 Plasma Sources SCI. T. 22 045020Google Scholar

    [22]

    Debel F, Cammarate F. 1998 J. Phys D:. Appl. Phys. 31 31Google Scholar

    [23]

    Shidoji E, Masaharn N J. 1994 Jpn. J. Appl. Phys. 33 4281Google Scholar

    [24]

    Qiu Q Q, Li Q F, Su J J 2008 Plasma Sources Sci. Technol. 10 694Google Scholar

    [25]

    Bohlmark J, Gudmundsson J T, Alami J 2005 IEEE Trans. Plasma Sci. 33 346Google Scholar

    [26]

    Qiu Q Q, Li Q F, Su J J 2008 IEEE Trans. Plasma Sci. 36 1899Google Scholar

    [27]

    Wu Z Z, Xiao S, Ma Z Y, Cui S H Ji S P, Tian X B, Fu R K Y, Chu P K 2015 AIP Adv. 5 097178Google Scholar

    [28]

    Anders A 2008 Appl. Phys. Lett. 92 201501Google Scholar

    [29]

    Hecimovic A, Ehiasarian A P 2009 J. Phys D: Appl. 42 135209Google Scholar

    [30]

    Konstantinidis S, Dauchot J P, Ganciu M 2006 Appl. Phys. Lett. 88 021501Google Scholar

    [31]

    Duquenne C, Tessier P Y, Besland M P 2008 J. Appl. Phys. 104 063301Google Scholar

    [32]

    Ogneva É Y, Raikhbaum Y D, Ognev B R 1972 J. Appl Spectrosc. 17 971Google Scholar

  • 图 1  筒形溅射阴极结构示意图

    Fig. 1.  Schematic diagram of the cylindrical cathode.

    图 2  线圈电流对靶面磁场的作用规律 (a) 对切向磁场强度Bz的影响; (b)对法向磁场强度Br的影响

    Fig. 2.  Effects of coil current on the target magnetic field: (a) Tangential magnetic field strength Bz; (b) longitudinal magnetic field strength Br.

    图 3  –15 A条件下筒形溅射阴极磁铁排布示意图及其内部磁感线分布 (a), (d)优化前; (b), (e) 增加中央磁铁; (c), (f)含有中央磁场和同极小磁铁

    Fig. 3.  Magnet arrangement and magnetic induction lines distributions in the cylindrical cathode under –15 A: (a), (d) Before improvement; (b), (e) with the central magnets; (c), (f) with the central magnets and dipole magnets.

    图 4  中央磁铁磁极强度对靶面磁感应强度的影响 (a) 对切向磁感应强度Bz的影响; (b) 对法向磁感应场Br的影响

    Fig. 4.  Effects of central magnets strength on magnetic induction lines distribution of target surface: (a) Tangential magnetic field strength Bz; (b) longitudinal magnetic field strength Br.

    图 5  同极小磁铁磁极强度对靶面磁感应强度的影响 (a) 对切向磁感应强度Bz的影响; (b) 对法向磁感应场Br的影响

    Fig. 5.  Effects of dipole magnets strength on magnetic induction lines distribution of target surface: (a) Effects on tangential magnetic field strength Bz; (b) effects on longitudinal magnetic field strength Br.

    图 6  中央磁铁与靶后端面距离对靶面磁场强度的影响 (a) 对切向磁感应强度Bz的影响; (b) 对法向磁感应场Br的影响

    Fig. 6.  Effects of distance between the central magnets and the rear face of target on magnetic induction lines distribution of target surface: (a) Tangential magnetic field strength Bz; (b) longitudinal magnetic field strength Br.

    图 7  优化前和优化后靶面磁场分布及放电预测 (a), (b) 切向磁场Bz分布; (c), (d) 法向磁场Br分布; (e), (f) 0.4 μs时放电Ar+离子密度分布

    Fig. 7.  The magnetic distribution of target surface and the discharge prediction before and after improvement: (a), (b) The tangential magnetic field strength Bz; (c), (d) the longitudinal magnetic field strength Br; (e), (f) the distributions of Ar+ ions at 0.4 μs.

    图 8  靶面放电宽度及强度图 (a)优化前和(b)优化后放电宽度; (c)优化前和(d)优化后放电辉光图

    Fig. 8.  The etching width and plasma flow pictures: The etching width (a) before and (b) after the improvement; the plasma flow pictures (c) before and (d) after the improvement.

    图 9  不同电压下靶电压、靶电流及离子电流 优化前的 (a)靶电压、(c)靶电流及(e)离子电流曲线; 优化后的(b)靶电压、(d)靶电流及(f)离子电流曲线

    Fig. 9.  Target voltage, target current and ion current curves under different target voltages: (a), (c), (e) Before the improvement; (b), (d), (f) after the improvement.

    图 10  (a) 金属粒子浓度; (b) 离化率及电子温度变化图

    Fig. 10.  (a) Metal particle concentration; (b) ionization rate and electron temperature before and after the improvement.

    图 11  中央轴处的原子发射光谱(OES)强度 (a) 优化前光谱强度; (b)优化后光谱强度

    Fig. 11.  The OES intensity at the center axis of cylindrical cathode: (a) Before the improvement; (b) after the improvement.

    表 1  Ar气放电的主要反应表

    Table 1.  The main reactions of simple Ar gas discharge.

    反应方程式反应能量/eV反应类型
    ${{{\rm e}}} + {{\rm Ar}} \to {{\rm Ar}} + {{{\rm e}}}$弹性
    ${{{\rm e}}} + {{\rm Ar}} \to {{\rm A}}{{{\rm r}}^ + } + 2{{{\rm e}}}$15.76电离
    ${{{\rm e}}} + {{\rm Ar}} \to {{\rm A}}{{{\rm r}}^m} + {{{\rm e}}}$11.56激发
    ${{{\rm e}}} + {\operatorname{Ar} ^m} \to {{\rm Ar}} + {{{\rm e}}}$–11.56退激发
    ${{{\rm e}}} + {{\rm A}}{{{\rm r}}^m} \to {{\rm A}}{{{\rm r}}^ + } + 2{{{\rm e}}}$4.2电离
    ${{\rm A}}{{{\rm r}}^ + } + {{\rm Ar}} \to {{\rm A}}{{{\rm r}}^ + } + {{\rm Ar}}$弹性
    ${{\rm A}}{{{\rm r}}^ + } + {{\rm Ar}} \to {{\rm Ar}} + {{\rm A}}{{{\rm r}}^ + }$电荷交换
    下载: 导出CSV
    Baidu
  • [1]

    Bohlmark J, Alami J, Christou C, Ehiasarian A P, Helmersson U 2005 J. Vac. Sci. Technol. A23 18Google Scholar

    [2]

    吴忠振, 田修波, 潘锋, 傅劲裕, 朱剑豪 2014 63 185207Google Scholar

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Phys. Sin. 63 185207Google Scholar

    [3]

    Fernandes F, Calderon V S, Ferreira P J, Cavaleiro A, Oliveira J C 2020 Surf. Coat. Technol. 397 125996Google Scholar

    [4]

    Yang F C, Lin C Y, Tang J F, Chang C L 2020 Surf. Coat. Technol. 388 125579Google Scholar

    [5]

    Liu L L, Tang W, Zhou L, Wu Z C, Ruan Q D, Li X Y, Qasim A M, Wu Z Z, Chu P K 2020 Ceram Int. 46 10814Google Scholar

    [6]

    Anders A 2011 Surf. Coat. Technol. 205 S1Google Scholar

    [7]

    Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Technol. 205 591Google Scholar

    [8]

    肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪 2016 65 185202Google Scholar

    Xiao S, Wu Z Z, Cui S H, Liu L L, Zheng B C, Lin H, Fu J Y, Tian X B, Pan F, Chu P K 2016 Acta Phys. Sin. 65 185202Google Scholar

    [9]

    崔岁寒, 吴忠振, 肖舒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 朱剑豪, 谭文长, 潘锋 2017 66 095203Google Scholar

    Cui S H., Wu Z Z, Xiao S, Liu L L, Zheng B C, Lin H, Fu Ricky K Y, Tian X B, Chu P K, Tan W C, Pan F 2017 Acta Phys. Sin. 66 095203Google Scholar

    [10]

    崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长 2019 68 195204Google Scholar

    Cui S H., Wu Z Z, Lin H, Xiao S, Chen L, Li T J, Liu L L, Fu R K Y, Tian X B, Chu P K, Tan W C 2019 Acta Phys. Sin. 68 195204Google Scholar

    [11]

    汪天龙, 邱清泉, 靖立伟, 张小波 2018 67 070703Google Scholar

    Wang T L, Qiu Q Q, Jing L W, Zhang X B 2018 Acta Phys. Sin. 67 070703Google Scholar

    [12]

    Mishra A, Kelly P J, Bradley J W 2010 Plasma Sources Sci. Technol. 19 045014Google Scholar

    [13]

    Luo H, Gao F, Billard A 2019 Surf. Coat. Technol. 374 822Google Scholar

    [14]

    Mischker F, Prenzel M, Benedikt J, et al. 2013 J. Phys. D: Appl. Phys. 46 495201Google Scholar

    [15]

    Čapek J, Hála M, Zabeida O, Klemberg-Sapieha J E, Martinu L 2012 J. Appl. Phys. 111 023301Google Scholar

    [16]

    Ganesan R, Akhavan B, Dong X, McKenzie D R, Bilek M M M 2018 Surf. Coat. Technol. 352 671Google Scholar

    [17]

    赖建军, 余建华, 黄建军, 王新兵, 丘军林 2001 50 1528Google Scholar

    Lai J J, Yu J H, Huang J J, Wang X B, Qiu J L 2001 Acta Phys. Sin. 50 1528Google Scholar

    [18]

    Cui S H, Wu Z Z, Lin H, Xiao S, Zheng B C, Chen L, Li T J, Fu R K Y, Chu P K, Tian X B, Tan W C, Fang D N, Pan F 2020 J. Appl. Phys. 127 23301Google Scholar

    [19]

    Dawson J M 1983 Rev. Mod. Phys. 5 5Google Scholar

    [20]

    Vahedi V, Surendra M 1995 Comput. Phys. Commun. 8 7Google Scholar

    [21]

    Liebig B, Bradley J W 2013 Plasma Sources SCI. T. 22 045020Google Scholar

    [22]

    Debel F, Cammarate F. 1998 J. Phys D:. Appl. Phys. 31 31Google Scholar

    [23]

    Shidoji E, Masaharn N J. 1994 Jpn. J. Appl. Phys. 33 4281Google Scholar

    [24]

    Qiu Q Q, Li Q F, Su J J 2008 Plasma Sources Sci. Technol. 10 694Google Scholar

    [25]

    Bohlmark J, Gudmundsson J T, Alami J 2005 IEEE Trans. Plasma Sci. 33 346Google Scholar

    [26]

    Qiu Q Q, Li Q F, Su J J 2008 IEEE Trans. Plasma Sci. 36 1899Google Scholar

    [27]

    Wu Z Z, Xiao S, Ma Z Y, Cui S H Ji S P, Tian X B, Fu R K Y, Chu P K 2015 AIP Adv. 5 097178Google Scholar

    [28]

    Anders A 2008 Appl. Phys. Lett. 92 201501Google Scholar

    [29]

    Hecimovic A, Ehiasarian A P 2009 J. Phys D: Appl. 42 135209Google Scholar

    [30]

    Konstantinidis S, Dauchot J P, Ganciu M 2006 Appl. Phys. Lett. 88 021501Google Scholar

    [31]

    Duquenne C, Tessier P Y, Besland M P 2008 J. Appl. Phys. 104 063301Google Scholar

    [32]

    Ogneva É Y, Raikhbaum Y D, Ognev B R 1972 J. Appl Spectrosc. 17 971Google Scholar

  • [1] 高剑英, 李玉阁, 雷明凯. 深振荡磁控溅射放电等离子体脉冲特性.  , 2024, 73(16): 165201. doi: 10.7498/aps.73.20240364
    [2] 张天成, 陈迪娜, 李春雨, 张利民, 徐祖银, 成爱强, 包华广, 丁大志. GaN基高功率微波器件高效场路协同分析方法.  , 2023, 72(14): 147101. doi: 10.7498/aps.72.20230452
    [3] 谢冰鸿, 徐国凯, 肖绍球, 喻忠军, 朱大立. 非线性磁电换能器模型的谐振磁电效应分析及其输出功率优化.  , 2023, 72(11): 117501. doi: 10.7498/aps.72.20222277
    [4] 陈畅子, 马东林, 李延涛, 冷永祥. 高功率脉冲磁控溅射钛靶材的放电模型及等离子特性.  , 2021, 70(18): 180701. doi: 10.7498/aps.70.20202050
    [5] 沈永青, 张志强, 廖斌, 吴先映, 张旭, 华青松, 鲍曼雨. 高功率脉冲磁控溅射技术制备掺氮类金刚石薄膜的磨蚀性能.  , 2020, 69(10): 108101. doi: 10.7498/aps.69.20200021
    [6] 崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长. 外扩型电磁场控制筒形阴极内等离子体放电输运特性的仿真研究.  , 2019, 68(19): 195204. doi: 10.7498/aps.68.20190583
    [7] 汪天龙, 邱清泉, 靖立伟, 张小波. 圆形复合式磁控溅射阴极设计及其放电特性模拟研究.  , 2018, 67(7): 070703. doi: 10.7498/aps.67.20172576
    [8] 崔岁寒, 吴忠振, 肖舒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 朱剑豪, 谭文长, 潘锋. 筒内高功率脉冲磁控放电的电磁控制与优化.  , 2017, 66(9): 095203. doi: 10.7498/aps.66.095203
    [9] 肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪. 筒形高功率脉冲磁控溅射源的开发与放电特性.  , 2016, 65(18): 185202. doi: 10.7498/aps.65.185202
    [10] 郑世燕. 以广义Redlich-Kwong气体为工质的不可逆回热式斯特林热机循环输出功率和效率.  , 2014, 63(17): 170508. doi: 10.7498/aps.63.170508
    [11] 吴忠振, 田修波, 李春伟, Ricky K. Y. Fu, 潘锋, 朱剑豪. 高功率脉冲磁控溅射的阶段性放电特征.  , 2014, 63(17): 175201. doi: 10.7498/aps.63.175201
    [12] 吴忠振, 田修波, 潘锋, Ricky K. Y. Fu, 朱剑豪. 高压耦合高功率脉冲磁控溅射的增强放电效应.  , 2014, 63(18): 185207. doi: 10.7498/aps.63.185207
    [13] 谢辰, 胡明列, 徐宗伟, 兀伟, 高海峰, 张大鹏, 秦鹏, 王艺森, 王清月. 光纤激光器直接输出的高功率贝塞尔超短脉冲.  , 2013, 62(6): 064203. doi: 10.7498/aps.62.064203
    [14] 沈向前, 谢泉, 肖清泉, 陈茜, 丰云. 磁控溅射辉光放电特性的模拟研究.  , 2012, 61(16): 165101. doi: 10.7498/aps.61.165101
    [15] 王淦平, 向飞, 谭杰, 曹绍云, 罗敏, 康强, 常安碧. 长脉冲高功率微波驱动源放电过程研究.  , 2011, 60(7): 072901. doi: 10.7498/aps.60.072901
    [16] 牟宗信, 牟晓东, 王春, 贾莉, 董闯. 直流电源耦合高功率脉冲非平衡磁控溅射电离特性.  , 2011, 60(1): 015204. doi: 10.7498/aps.60.015204
    [17] 刘艳格, 张春书, 孙婷婷, 鲁云飞, 王 志, 袁树忠, 开桂云, 董孝义. 输出平均功率大于2W的高功率、包层抽运、超短脉冲铒镱共掺光纤激光器.  , 2006, 55(9): 4679-4685. doi: 10.7498/aps.55.4679
    [18] 阎明朗, 王亦中, 赖武彦. 磁控溅射Fe/Mo多层膜的巨磁电阻及层间耦合.  , 1995, 44(9): 1504-1508. doi: 10.7498/aps.44.1504
    [19] 陈建文, 傅淑芬, 刘妙宏. 高功率、高效率放电激励XeBr激光器.  , 1980, 29(6): 799-802. doi: 10.7498/aps.29.799
    [20] 张遵逵, 叶茂福. 无极脉冲放电激光器激发光源及其受激光输出特性的观察.  , 1966, 22(2): 174-182. doi: 10.7498/aps.22.174
计量
  • 文章访问数:  7098
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-16
  • 修回日期:  2020-10-13
  • 上网日期:  2021-02-06
  • 刊出日期:  2021-02-20

/

返回文章
返回
Baidu
map