-
High-power impulse magnetron sputtering (HiPIMS), a new physical vapor deposition technique which combines the advantages of the high ionization rates of the sputtered materials and control of electromagnetism, has been widely used to deposit high-performance coatings with a large density and high adhesion. However, HiPIMS has some intrinsic disadvantages such as the low deposition rate, unstable discharge, and different ionization rates for different materials thereby hampering wider industrial adoption. We have recently designed an optimized cylindrical source based on the hollow cathode effect to circumvent the aforementioned limitations. However, during the operation of the cylindrical source, the discharge is inhomogeneous and the etching stripes are nonuniform. In order to determine the underlying mechanism and optimize the electromagnetic control, the discharge in the HiPIMS cylindrical source is simulated. The tangential magnetic field distribution on the target surface of the cylindrical sputtering source is inhomogeneous and electron runaway is serious, resulting in a relatively low plasma density. Two solutions are proposed to improve the situations. The first one is electrical improvement by installing an electron blocking plate, and the second one is magnetic improvement by adding compensating magnets. Our simulation results of the first method show that a potential well is produced by the electron blocking plate to suppress electron runaway and the plasma density is improved significantly, especially around the central cross-section of the cylindrical sputtering source. The discharge becomes homogeneous, and the etching stripes are uniform albeit not full enough. The second method of magnetic improvement significantly improves the homogeneity of the tangential magnetic field distribution on the target surface and the target utilization rate. After adding the optimized compensating magnets, the shape of the effective area (the value of the tangential magnetic field in a range of 25-50 mT) on the target surface can be controlled and made zonal. The target utilization rate increases to over 80% from 60%. In order to obtain the optimal conditions, the two techniques are combined. A larger and more homogeneous etching ring is observed by adopting both the electrical and magnetic improvements as predicted and explained by the simulation results. It can be concluded that the combination of the two improvement techniques can improve and optimize the HiPIMS cylindrical source.
-
Keywords:
- high power impulse magnetron sputtering /
- discharge in cylindrical source /
- electron blocking plate /
- magnetic field compensation
[1] Kouznetsov V, Mack K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290
[2] Wu Z Z, Tian X B, Li C W, Fu R K Y, Pan F, Chu P K 2014 Acta Phys. Sin. 63 175201 (in Chinese) [吴忠振, 田修波, 李春伟, Ricky K Y Fu, 潘锋, 朱剑豪 2014 63 175201]
[3] Wu Z Z, Tian X B, Pan F, Ricky K Y Fu, Chu P K 2014 Acta Phys. Sin. 63 185207 (in Chinese) [吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 63 185207]
[4] Ehiasarian A P, Munz W D, Hultman L, Helmersson U, Petrov I 2003 Surf. Coat. Technol. 163-164 267
[5] Ehiasarian A P, Wen J G, Petrov I J 2007 Appl. Phys. 101 054301
[6] Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Technol. 205 591
[7] Anders A 2011 Surf. Coat. Technol. 205 S1
[8] Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Meta. Sin. 10 1279 (in Chinese) [吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 金属学报 10 1279]
[9] Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 204 1661
[10] Helmersson U 2011 Proceedings of 11th International Workshop on Plasma Based Ion Implantation Deposition Harbin, China, October 8-12, 2011 p21
[11] Xu L, Wang S Q 2010 Vacuum 47 79 (in Chinese) [许丽, 王世庆 2010 真空 47 79]
[12] Karpov D A 1997 Surf. Coat. Technol. 96 22
[13] Lai J J, Yu J H, Huang J J, Wang X B, Qiu J L 2001 Acta Phys. Sin. 50 1528 (in Chinese) [赖建军, 余建华, 黄建军, 王新兵, 丘军林 2001 50 1528]
[14] Xiao S, Wu Z Z, Cui S H, Liu L L, Zheng B C, Lin H, Fu J Y, Tian X B, Pan F, Chu P K 2016 Acta Phys. Sin. 65 185202 (in Chinese) [肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪 2016 65 185202]
[15] Wu Z Z, Pan F, Xiao S 2014 China Patent 201410268695.1 (in Chinese) [吴忠振, 潘锋, 肖舒2014 中国专利 201410268695.1]
[16] Guan K Z, Li Y Q 1986 Vaccum 23 37 (in Chinese) [关奎之, 李云奇 1986 真空 23 37]
[17] Wang H Y, Sun W B, Chen Y B, He Y J 2008 Phys. Exp. 28 1 (in Chinese) [王合英, 孙文博, 陈宜宝, 何元金 2008 物理实验 28 1]
[18] Fu Q X 2013 M. S. Thesis (Xi An: Xi Dian University) (in Chinese) [付强新2013 硕士学位论文 (西安: 西安电子科技大学)]
[19] Zhang W R 2013 M. S. Thesis (Da Lian: Dalian University of Technology) (in Chinese) [张文茹 2013 硕士学位论文 (大连: 大连理工大学)]
[20] Duan W Z 2010 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese) [段伟赞 2010 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]
-
[1] Kouznetsov V, Mack K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290
[2] Wu Z Z, Tian X B, Li C W, Fu R K Y, Pan F, Chu P K 2014 Acta Phys. Sin. 63 175201 (in Chinese) [吴忠振, 田修波, 李春伟, Ricky K Y Fu, 潘锋, 朱剑豪 2014 63 175201]
[3] Wu Z Z, Tian X B, Pan F, Ricky K Y Fu, Chu P K 2014 Acta Phys. Sin. 63 185207 (in Chinese) [吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 63 185207]
[4] Ehiasarian A P, Munz W D, Hultman L, Helmersson U, Petrov I 2003 Surf. Coat. Technol. 163-164 267
[5] Ehiasarian A P, Wen J G, Petrov I J 2007 Appl. Phys. 101 054301
[6] Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Technol. 205 591
[7] Anders A 2011 Surf. Coat. Technol. 205 S1
[8] Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Meta. Sin. 10 1279 (in Chinese) [吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 金属学报 10 1279]
[9] Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 204 1661
[10] Helmersson U 2011 Proceedings of 11th International Workshop on Plasma Based Ion Implantation Deposition Harbin, China, October 8-12, 2011 p21
[11] Xu L, Wang S Q 2010 Vacuum 47 79 (in Chinese) [许丽, 王世庆 2010 真空 47 79]
[12] Karpov D A 1997 Surf. Coat. Technol. 96 22
[13] Lai J J, Yu J H, Huang J J, Wang X B, Qiu J L 2001 Acta Phys. Sin. 50 1528 (in Chinese) [赖建军, 余建华, 黄建军, 王新兵, 丘军林 2001 50 1528]
[14] Xiao S, Wu Z Z, Cui S H, Liu L L, Zheng B C, Lin H, Fu J Y, Tian X B, Pan F, Chu P K 2016 Acta Phys. Sin. 65 185202 (in Chinese) [肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪 2016 65 185202]
[15] Wu Z Z, Pan F, Xiao S 2014 China Patent 201410268695.1 (in Chinese) [吴忠振, 潘锋, 肖舒2014 中国专利 201410268695.1]
[16] Guan K Z, Li Y Q 1986 Vaccum 23 37 (in Chinese) [关奎之, 李云奇 1986 真空 23 37]
[17] Wang H Y, Sun W B, Chen Y B, He Y J 2008 Phys. Exp. 28 1 (in Chinese) [王合英, 孙文博, 陈宜宝, 何元金 2008 物理实验 28 1]
[18] Fu Q X 2013 M. S. Thesis (Xi An: Xi Dian University) (in Chinese) [付强新2013 硕士学位论文 (西安: 西安电子科技大学)]
[19] Zhang W R 2013 M. S. Thesis (Da Lian: Dalian University of Technology) (in Chinese) [张文茹 2013 硕士学位论文 (大连: 大连理工大学)]
[20] Duan W Z 2010 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese) [段伟赞 2010 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]
Catalog
Metrics
- Abstract views: 11973
- PDF Downloads: 252
- Cited By: 0