搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压强与功率对高气压空气微波放电自组织结构影响的数值研究

朱国强 Jean-Pierre Boeuf 李进贤

引用本文:
Citation:

压强与功率对高气压空气微波放电自组织结构影响的数值研究

朱国强, Jean-Pierre Boeuf, 李进贤

Effects of pressure and incident power on self-organization pattern structure during microwave breakdown in high pressure air

Zhu Guo-Qiang, Jean-Pierre Boeuf, Li Jin-Xian
PDF
导出引用
  • 压强和微波功率是高气压空气微波放电中的两个重要影响因素, 取值对放电过程中等离子体动力学特征及自组织结构有着直接的影响. 利用有效扩散模型和双重网格方法,对放电过程中压强和微波功率的影响进行了数值研究. 结果表明, 压强降低时放电等离子体将从间隔分明的等离子体斑点结构变为一团呈扩散特性的等离子体, 而微波功率增大时,等离子体向着微波入射方向的传播速度随之快速增大, 传播过程中等离子前沿的跳跃性和斑点状的自组织结构也更加分明.
    Pressure and microwave power are the most important parameters during microwave breakdown in air and affect the self-organization plasma pattern structure and its propagation directly. In order to study the effects of pressure and microwave power, an effective-diffusion fluid plasma equation is solved together with Maxwell's equations, and the double grid method is also used to meet the different grid size requirement of plasma equation and finite-difference-time-domain for Maxwell's equations. The numerical results show that with lower pressure the plasma behaves as a more diffuse plasmoid instead of a well defined plasma pattern structure under higher pressure, and the increase of incident microwave power will lead to a rapid growth of the front propagation velocity and a well separated and sharp pattern structure, and the higher incident power also results in jump-like front propagation.
    • 基金项目: 西北工业大学基础研究基金(批准号: JC20120217)资助的课题.
    • Funds: Project supported by the Fundamental Research Fund of Northwestern Polytechnical University, China (Grant No. JC20120217).
    [1]

    MacDonald D 1966 Microwave Breakdown in Gases (New York: John Wiley & Sons)

    [2]

    Litvak A 1994 Freely localized gas discharges in microwave beams. in Applications of High Power Microwaves, edited by Gaponov-Grekhov A V, Granatstein V L (Boston: Artech House) pp145-167

    [3]

    Vikharev A L, Gil'denburg V B, Golubev S V, Eremin B G, Ivanov O A, Litvak A G, Stepanov A N, Yunakovskii A D 1988 Sov. Phys. JETP 67 724

    [4]

    Hidaka Y, Choi E M, Mastovsky I, Shapiro M A, Sirigiri J R, Temkin R J 2008 Phys. Rev. Lett. 100 035003

    [5]

    Hidaka Y, Choi E M, Mastovsky I, Shapiro M A, Sirigiri J R, Temkin R J, Edmiston G F, Neuber A A, Oda Y 2009 Phys. Plasma 16 055702

    [6]

    Cook A, Shapiro M, Temkin R 2010 Appl. Phys. Lett. 97 011504

    [7]

    Nam S K, Verboncoeur J P 2009 Phys. Rev. Lett. 103 055004

    [8]

    Boeuf J P, Chaudhury B, Zhu G Q 2010 Phys. Rev. Lett. 104 015002

    [9]

    Chaudhury B, Boeuf J P, Zhu G Q 2010 Phys. Plasma 17 123505

    [10]

    Zhu G Q, Boeuf J P, Chaudhury B 2011 Plasma Sources Sci. Technol. 20 035007

    [11]

    Chaudhury B, Boeuf J P, Zhu G Q 2011 J. Appl. Phys. 110 113306

    [12]

    Ebert U, Saarloos W 2000 Physica D: Nonlinear Phenomena 164 1

    [13]

    Kunz K S, Luebbers R J 1993 The Finite Difference Time Domain Method for Electromagnetics (Baca Raton, Ann Arbor, London, Tokyo: CRC Press) p13

    [14]

    Cummer S A 1997 IEEE Trans. on Antennas and Propagation 45 3

    [15]

    Yee K K 1966 IEEE Trans. on Antennas and Propagation AP-14 3

    [16]

    Mur G 1981 IEEE Trans. on Electromagnetic Compatibility EMC-23 4

    [17]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer) pp53-57

    [18]

    Warne L K, Jorgenson R E, Nicolaysen S D 2003 Ionization Coefficient Approach to Modeling Breakdown in Nonuniform Geometries Sandia Report SAND 2003-4078

  • [1]

    MacDonald D 1966 Microwave Breakdown in Gases (New York: John Wiley & Sons)

    [2]

    Litvak A 1994 Freely localized gas discharges in microwave beams. in Applications of High Power Microwaves, edited by Gaponov-Grekhov A V, Granatstein V L (Boston: Artech House) pp145-167

    [3]

    Vikharev A L, Gil'denburg V B, Golubev S V, Eremin B G, Ivanov O A, Litvak A G, Stepanov A N, Yunakovskii A D 1988 Sov. Phys. JETP 67 724

    [4]

    Hidaka Y, Choi E M, Mastovsky I, Shapiro M A, Sirigiri J R, Temkin R J 2008 Phys. Rev. Lett. 100 035003

    [5]

    Hidaka Y, Choi E M, Mastovsky I, Shapiro M A, Sirigiri J R, Temkin R J, Edmiston G F, Neuber A A, Oda Y 2009 Phys. Plasma 16 055702

    [6]

    Cook A, Shapiro M, Temkin R 2010 Appl. Phys. Lett. 97 011504

    [7]

    Nam S K, Verboncoeur J P 2009 Phys. Rev. Lett. 103 055004

    [8]

    Boeuf J P, Chaudhury B, Zhu G Q 2010 Phys. Rev. Lett. 104 015002

    [9]

    Chaudhury B, Boeuf J P, Zhu G Q 2010 Phys. Plasma 17 123505

    [10]

    Zhu G Q, Boeuf J P, Chaudhury B 2011 Plasma Sources Sci. Technol. 20 035007

    [11]

    Chaudhury B, Boeuf J P, Zhu G Q 2011 J. Appl. Phys. 110 113306

    [12]

    Ebert U, Saarloos W 2000 Physica D: Nonlinear Phenomena 164 1

    [13]

    Kunz K S, Luebbers R J 1993 The Finite Difference Time Domain Method for Electromagnetics (Baca Raton, Ann Arbor, London, Tokyo: CRC Press) p13

    [14]

    Cummer S A 1997 IEEE Trans. on Antennas and Propagation 45 3

    [15]

    Yee K K 1966 IEEE Trans. on Antennas and Propagation AP-14 3

    [16]

    Mur G 1981 IEEE Trans. on Electromagnetic Compatibility EMC-23 4

    [17]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer) pp53-57

    [18]

    Warne L K, Jorgenson R E, Nicolaysen S D 2003 Ionization Coefficient Approach to Modeling Breakdown in Nonuniform Geometries Sandia Report SAND 2003-4078

  • [1] 付瑜亮, 张思远, 孙安邦, 马祖福, 王亚楠. 磁阵列微波放电中和器的电子引出机制.  , 2024, 73(11): 115203. doi: 10.7498/aps.73.20240273
    [2] 成爱强, 王帅, 徐祖银, 贺瑾, 张天成, 包华广, 丁大志. 高功率GaN 微波器件大信号缩放模型.  , 2023, 72(14): 147103. doi: 10.7498/aps.72.20230440
    [3] 金康, 经光银. 双电层相互作用下主动粒子系统的压强.  , 2019, 68(17): 170501. doi: 10.7498/aps.68.20190435
    [4] 黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸. 锁频锁相的高功率微波器件技术研究.  , 2018, 67(8): 088402. doi: 10.7498/aps.67.20172684
    [5] 唐涛. 高功率微波土壤击穿的数值验证研究.  , 2015, 64(4): 045203. doi: 10.7498/aps.64.045203
    [6] 周前红, 董志伟. 垂直相交高功率微波大气击穿的理论研究.  , 2013, 62(20): 205202. doi: 10.7498/aps.62.205202
    [7] 董太源, 叶坤涛, 刘维清. 表面波等离子体源的发展现状.  , 2012, 61(14): 145202. doi: 10.7498/aps.61.145202
    [8] 杨涓, 李鹏飞, 杨乐. 不同功率下无工质微波推力器的推力预估.  , 2011, 60(12): 124101. doi: 10.7498/aps.60.124101
    [9] 张颖, 何智兵, 闫建成, 李萍, 唐永建. 工作压强对硅掺杂辉光放电聚合物结构和性能的影响.  , 2011, 60(6): 066803. doi: 10.7498/aps.60.066803
    [10] 王淦平, 向飞, 谭杰, 曹绍云, 罗敏, 康强, 常安碧. 长脉冲高功率微波驱动源放电过程研究.  , 2011, 60(7): 072901. doi: 10.7498/aps.60.072901
    [11] 高碧荣, 刘悦. 电子回旋共振等离子体密度均匀性的数值研究.  , 2011, 60(4): 045201. doi: 10.7498/aps.60.045201
    [12] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟.  , 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [13] 董丽芳, 谢伟霞, 赵海涛, 范伟丽, 贺亚峰, 肖红. 氩气/空气介质阻挡放电自组织超六边形斑图实验研究.  , 2009, 58(7): 4806-4811. doi: 10.7498/aps.58.4806
    [14] 梁芳营, 刘 洪, 李英骏. 高温超导的压力效应研究.  , 2006, 55(7): 3683-3687. doi: 10.7498/aps.55.3683
    [15] 张 林, 孔红艳, 杨国健. 约束阱中受激发原子的集体反弹效应所导致的自组织行为.  , 2006, 55(10): 5122-5128. doi: 10.7498/aps.55.5122
    [16] 李正红, 孟凡宝, 常安碧, 黄 华, 马乔生. 两腔高功率微波振荡器研究.  , 2005, 54(8): 3578-3583. doi: 10.7498/aps.54.3578
    [17] 黄松, 辛煜, 宁兆元, 程珊华, 陆新华. 微波输入功率引起a-C∶F薄膜交联结构的增强.  , 2002, 51(11): 2635-2639. doi: 10.7498/aps.51.2635
    [18] 董丽芳, 李雪辰, 尹增谦, 王龙. 大气压介质阻挡放电中的自组织斑图结构.  , 2002, 51(10): 2296-2301. doi: 10.7498/aps.51.2296
    [19] 陈溪滢, 曹先安, 丁训民, 侯晓远, 陈良尧, 赵国庆. 微波放电法生长GaS薄膜的性质.  , 1997, 46(4): 826-832. doi: 10.7498/aps.46.826
    [20] 初鑫钊, 刘淑琴, 董太乾. 铷原子频标中的微波功率频移.  , 1994, 43(7): 1072-1076. doi: 10.7498/aps.43.1072
计量
  • 文章访问数:  6571
  • PDF下载量:  504
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-27
  • 修回日期:  2012-06-24
  • 刊出日期:  2012-12-05

/

返回文章
返回
Baidu
map