-
Nanosecond-pulse discharge can produce low-temperature plasma with high electron energy and power density in atmospheric air, thus it has been widely used in the fields of biomedical science, surface treatment, chemical deposition, flow control, plasma combustion and gas diode. However, some phenomena in nanosecond-pulse discharge cannot be explained by traditional discharge theories (Townsend theory and streamer theory), thus the mechanism of pulsed gas discharge based on runaway breakdown of high-energy electrons has been proposed. Generally, the generation and propagation of runaway electrons are accompanied by the generation of X-ray. Therefore, the properties of X-ray can indirectly reveal the characteristics of high-energy runaway electrons in nanosecond-pulse discharges. In this paper, in order to explore the characteristics of runaway electrons and the mechanism of nanosecond-pulse discharge, the temporal properties of X-ray in nanosecond-pulse discharge are investigated. A nanosecond power supply VPG-30-200 (with peak voltage 0200 kV, rising time 1.2-1.6 ns, and full width at half maximum 3-5 ns) is used to produce nanosecond-pulse discharge. The discharge is generated in a tube-to-plane electrode at atmospheric pressure. Effects of the inter-electrode gap, anode thickness and position on the characteristics of X-ray are investigated by measuring the temporal X-ray via a diamond photoconductive device. The experimental results show that X-ray in nanosecond-pulse discharge has a rising time of 1 ns, a pulse width of about 2 ns and a calculated energy of about 2.310-3 J. The detected X-ray energy decreases with the increase of inter-electrode gap, because the longer discharge gap reduces the electric field and the number of runaway electrons, weakening the bremsstrahlung at the anode. When the inter-electrode gap is 50 mm, the discharge mode is converted from a diffuse into a corona, resulting in a rapid decrease in X-ray energy. Furthermore, both X-ray energies measured behind the anode and on the side of discharge chamber decrease as anode thickness increases. The X-ray energy measured on the side of the discharge chamber is one order of magnitude higher than that measured behind the anode, which is because the anode foil absorbs some X-rays when they cross the foil. In addition, the X-ray energy behind the anode significantly decreases with the increase of the thickness of anode aluminum foil. It indicates that the X-ray in nanosecond-pulse discharge mainly comes from the bremsstrahlung caused by the collision between the high-energy runaway electrons and inner surface of the anode foil. Therefore, increasing the thickness of the anode foil will reduce the X-ray energy across the anode film.
-
Keywords:
- gas discharge /
- nanosecond-pulse /
- runaway electron /
- X-ray
[1] Shao T, Zhang C, Wang R X, Yan P, Ren C Y 2016 High Volt. Eng. 42 685 (in Chinese) [邵涛, 章程, 王瑞雪, 严萍, 任成燕 2016 高电压技术 42 685]
[2] Lu X P, Yan P, Ren C S, Shao T 2011 Sci. China: Phys. Mech. Astron. 41 801 (in Chinese) [卢新培, 严萍, 任春生, 邵涛 2011 中国科学:物理学 力学 天文学 41 801]
[3] Li Y, Mu H B, Deng J B, Zhang G J, Wang S H 2013 Acta Phys. Sin. 62 134703 (in Chinese) [李元, 穆海宝, 邓军波, 王曙鸿 2013 62 134703]
[4] Yu J L, He L M, Ding W, Wang Y Q, Du C 2013 Chin. Phys. B 22 055201
[5] Korolev Y D, Mesyats G A 1998 Physics of Pulsed Breakdown in Gases (Ekaterinburg: URO-Press) pp161-162
[6] Baksht E H, Burachenko A G, Kostyrya I D, Lomaev M I, Rybka D V, Shulepove M A, Tarasenko V F 2009 J. Phys. D: Appl. Phys. 42 185201
[7] Zhang C, Shao T, Long K H, Yu Y, Wang J, Zhang D D, Yan P, Zhou Y X 2010 IEEE Plasma Sci. 38 1517
[8] Chen F, Huo Y J, He S F, Feng L C 2001 Chin. Phys. Lett. 18 228
[9] Zhang C, Tarasenko V F, Shao T, Beloplotov D V, Lomaev M I, Wang R X, Sorokin D A, Yan P 2015 Phys. Plasmas 22 033511
[10] Che X K, Nie W S, Zhou P H, He H B, Tian X H, Zhou S Y 2013 Acta Phys. Sin. 62 224702 (in Chinese) [车学科, 聂万胜, 周朋辉, 何浩波, 田希晖, 周思引 2013 62 224702]
[11] Dai D, Wang Q M, Hao Y B 2013 Acta Phys. Sin. 62 135204 (in Chinese) [戴栋, 王其明, 郝艳捧 2013 62 135204]
[12] Zhang C, Tarasenko V F, Gu J W, Baksht E K, Beloplotov D V, Burachenko A G, Yan P, Lomaev M I, Shao T 2016 Phys. Rev. Accel. Beams 19 030402
[13] Wang X Q, Dai D, Hao Y B, Li L C 2012 Acta Phys. Sin. 61 230504 (in Chinese) [王敩青, 戴栋, 郝艳捧, 李立浧 2012 61 230504]
[14] Mesyats G A, Bychkov Y I, Kremnev V V 1972 Sov. Phys. Usp. 15 282
[15] Kunhard E E, Tzeng Y 1988 Phys. Rev. A 38 1410
[16] Babich L P 2005 Phys. -Usp. 48 1015
[17] Vasilyak L M, Kostyuchenko S V, Kudryavtsev N N, Filyugin I V 1994 Phys. -Usp. 37 247
[18] Raizer Y P, Allen J E 1991 Gas Discharge Physics (Berlin: Springer-Verlag) pp9-14
[19] Gurevich A V, Zybin K P 2005 Phys. Today 58 37
[20] Yakovlenko S I 2007 Proc. Prokhorov General Inst. 63 186
[21] Noggle R C, Krider E P, Wayland J R 1968 J. Appl. Phys. 39 4746
[22] Stankevich Y L, Kalinin V G 1968 Sov. Phys. Dokl. 12 1041
[23] Shao T, Zhang C, Niu Z, Yan P 2011 Appl. Phys. Lett. 98 021503
[24] Kochkin P, Köhn C, Ebert U, Deursen L V 2016 Plasma Sources Sci. Technol. 25 044002
[25] Oreshkin E V, Barengolts S A, Chaikovsky S A, Oginov A V, Shpakov K V 2012 Phys. Plasmas 19 013108
[26] Tarasenko V F, Lomaev M I, Beloplotov D V, Sorokin D A 2016 High Volt. 1 181
[27] Tarasenko V F, Rybka D V 2016 High Volt. 1 43
[28] Baksht E K, Burachenko A G, Erofeev M V, Tarasenko V F 2014 Plasma Phys. Rep. 40 404
[29] Pan L S, Han S, Kania D R, Zhao S, Gan K K, Kagan H, Kass R, Malchow R, Morrow F, Palmer W F, White C, Kim S K, Sannes F, Schnetzer S, Stone R, Thomson G B, Sugimoto Y, Fry A, Kanda S, Olsen S, Franklin M, Ager J W, Pianetta P 1993 J. Appl. Phys. 74 1086
[30] Spielman R B 1995 Rev. Sci. Instrum. 66 867
[31] Gu J W, Zhang C, Wang R X, Yan P, Shao T 2016 Plasma Sci. Technol. 18 230
[32] Shao T, Tarasenko V F, Yang W J, Beloplotov D V, Zhang C, Lomaev M I, Yan P, Sorokin D A 2014 Chin. Phys. Lett. 31 085201
[33] Zhang R, Luo H Y, Zou X B, Shi H T, Zhu X L, Zhao S, Wang X X, Yap S, Wong C S 2014 IEEE Trans. Plasma Sci. 42 3143
[34] Shao T, Tarasenko V F, Yang W, Beloplotov D V, Zhang C, Lomaev M I, Yan P, Sorokin D A 2014 Plasma Sources Sci. Technol. 23 054018
[35] Wang X X 2012 High Volt. Eng. 38 1537 (in Chinese) [王新新 2012 高电压技术 38 1537]
[36] Zou X B, Wang X X, Zhang G X, Han M, Luo C M 2006 Acta Phys. Sin. 55 1289 (in Chinese) [邹晓兵, 王新新, 张贵新, 韩旻, 罗承沐 2006 55 1289]
[37] Babich L P, Loiko T V, Tsukernab V A 1990 Sov. Phys. Usp. 33 521
[38] Gurevich A V, Zybin K P 2001 Phys. -Usp. 44 1119
[39] Nguyem C V, van Deursen A P J, van Heesch E J M, Winands G J J, Pemen A J M 2010 J. Phys. D: Appl. Phys. 43 025202
[40] Zhang C, Tarasenko V F, Gu J W, Baksht E, Wang R X, Yan P, Shao T 2015 Phys. Plasmas 22 123516
[41] Song H M, Jia M, Jin D, Cui W, Wu Y 2016 Chin. Phys. B 25 262
[42] Wang X B, Li Y D, Cui W Z, Li Y, Zhang H T, Zhang X N, Liu C L 2016 Acta Phys. Sin. 65 047901 (in Chinese) [王新波, 李永东, 崔万照, 李韵, 张洪太, 张小宁, 刘纯亮 2016 65 047901]
[43] Zhang C, Shao T, Niu Z, Zhang D D, Wang J, Yan P 2012 Acta Phys. Sin. 61 035202 (in Chinese) [章程, 邵涛, 牛铮, 张东东, 王珏, 严萍 2012 61 035202]
-
[1] Shao T, Zhang C, Wang R X, Yan P, Ren C Y 2016 High Volt. Eng. 42 685 (in Chinese) [邵涛, 章程, 王瑞雪, 严萍, 任成燕 2016 高电压技术 42 685]
[2] Lu X P, Yan P, Ren C S, Shao T 2011 Sci. China: Phys. Mech. Astron. 41 801 (in Chinese) [卢新培, 严萍, 任春生, 邵涛 2011 中国科学:物理学 力学 天文学 41 801]
[3] Li Y, Mu H B, Deng J B, Zhang G J, Wang S H 2013 Acta Phys. Sin. 62 134703 (in Chinese) [李元, 穆海宝, 邓军波, 王曙鸿 2013 62 134703]
[4] Yu J L, He L M, Ding W, Wang Y Q, Du C 2013 Chin. Phys. B 22 055201
[5] Korolev Y D, Mesyats G A 1998 Physics of Pulsed Breakdown in Gases (Ekaterinburg: URO-Press) pp161-162
[6] Baksht E H, Burachenko A G, Kostyrya I D, Lomaev M I, Rybka D V, Shulepove M A, Tarasenko V F 2009 J. Phys. D: Appl. Phys. 42 185201
[7] Zhang C, Shao T, Long K H, Yu Y, Wang J, Zhang D D, Yan P, Zhou Y X 2010 IEEE Plasma Sci. 38 1517
[8] Chen F, Huo Y J, He S F, Feng L C 2001 Chin. Phys. Lett. 18 228
[9] Zhang C, Tarasenko V F, Shao T, Beloplotov D V, Lomaev M I, Wang R X, Sorokin D A, Yan P 2015 Phys. Plasmas 22 033511
[10] Che X K, Nie W S, Zhou P H, He H B, Tian X H, Zhou S Y 2013 Acta Phys. Sin. 62 224702 (in Chinese) [车学科, 聂万胜, 周朋辉, 何浩波, 田希晖, 周思引 2013 62 224702]
[11] Dai D, Wang Q M, Hao Y B 2013 Acta Phys. Sin. 62 135204 (in Chinese) [戴栋, 王其明, 郝艳捧 2013 62 135204]
[12] Zhang C, Tarasenko V F, Gu J W, Baksht E K, Beloplotov D V, Burachenko A G, Yan P, Lomaev M I, Shao T 2016 Phys. Rev. Accel. Beams 19 030402
[13] Wang X Q, Dai D, Hao Y B, Li L C 2012 Acta Phys. Sin. 61 230504 (in Chinese) [王敩青, 戴栋, 郝艳捧, 李立浧 2012 61 230504]
[14] Mesyats G A, Bychkov Y I, Kremnev V V 1972 Sov. Phys. Usp. 15 282
[15] Kunhard E E, Tzeng Y 1988 Phys. Rev. A 38 1410
[16] Babich L P 2005 Phys. -Usp. 48 1015
[17] Vasilyak L M, Kostyuchenko S V, Kudryavtsev N N, Filyugin I V 1994 Phys. -Usp. 37 247
[18] Raizer Y P, Allen J E 1991 Gas Discharge Physics (Berlin: Springer-Verlag) pp9-14
[19] Gurevich A V, Zybin K P 2005 Phys. Today 58 37
[20] Yakovlenko S I 2007 Proc. Prokhorov General Inst. 63 186
[21] Noggle R C, Krider E P, Wayland J R 1968 J. Appl. Phys. 39 4746
[22] Stankevich Y L, Kalinin V G 1968 Sov. Phys. Dokl. 12 1041
[23] Shao T, Zhang C, Niu Z, Yan P 2011 Appl. Phys. Lett. 98 021503
[24] Kochkin P, Köhn C, Ebert U, Deursen L V 2016 Plasma Sources Sci. Technol. 25 044002
[25] Oreshkin E V, Barengolts S A, Chaikovsky S A, Oginov A V, Shpakov K V 2012 Phys. Plasmas 19 013108
[26] Tarasenko V F, Lomaev M I, Beloplotov D V, Sorokin D A 2016 High Volt. 1 181
[27] Tarasenko V F, Rybka D V 2016 High Volt. 1 43
[28] Baksht E K, Burachenko A G, Erofeev M V, Tarasenko V F 2014 Plasma Phys. Rep. 40 404
[29] Pan L S, Han S, Kania D R, Zhao S, Gan K K, Kagan H, Kass R, Malchow R, Morrow F, Palmer W F, White C, Kim S K, Sannes F, Schnetzer S, Stone R, Thomson G B, Sugimoto Y, Fry A, Kanda S, Olsen S, Franklin M, Ager J W, Pianetta P 1993 J. Appl. Phys. 74 1086
[30] Spielman R B 1995 Rev. Sci. Instrum. 66 867
[31] Gu J W, Zhang C, Wang R X, Yan P, Shao T 2016 Plasma Sci. Technol. 18 230
[32] Shao T, Tarasenko V F, Yang W J, Beloplotov D V, Zhang C, Lomaev M I, Yan P, Sorokin D A 2014 Chin. Phys. Lett. 31 085201
[33] Zhang R, Luo H Y, Zou X B, Shi H T, Zhu X L, Zhao S, Wang X X, Yap S, Wong C S 2014 IEEE Trans. Plasma Sci. 42 3143
[34] Shao T, Tarasenko V F, Yang W, Beloplotov D V, Zhang C, Lomaev M I, Yan P, Sorokin D A 2014 Plasma Sources Sci. Technol. 23 054018
[35] Wang X X 2012 High Volt. Eng. 38 1537 (in Chinese) [王新新 2012 高电压技术 38 1537]
[36] Zou X B, Wang X X, Zhang G X, Han M, Luo C M 2006 Acta Phys. Sin. 55 1289 (in Chinese) [邹晓兵, 王新新, 张贵新, 韩旻, 罗承沐 2006 55 1289]
[37] Babich L P, Loiko T V, Tsukernab V A 1990 Sov. Phys. Usp. 33 521
[38] Gurevich A V, Zybin K P 2001 Phys. -Usp. 44 1119
[39] Nguyem C V, van Deursen A P J, van Heesch E J M, Winands G J J, Pemen A J M 2010 J. Phys. D: Appl. Phys. 43 025202
[40] Zhang C, Tarasenko V F, Gu J W, Baksht E, Wang R X, Yan P, Shao T 2015 Phys. Plasmas 22 123516
[41] Song H M, Jia M, Jin D, Cui W, Wu Y 2016 Chin. Phys. B 25 262
[42] Wang X B, Li Y D, Cui W Z, Li Y, Zhang H T, Zhang X N, Liu C L 2016 Acta Phys. Sin. 65 047901 (in Chinese) [王新波, 李永东, 崔万照, 李韵, 张洪太, 张小宁, 刘纯亮 2016 65 047901]
[43] Zhang C, Shao T, Niu Z, Zhang D D, Wang J, Yan P 2012 Acta Phys. Sin. 61 035202 (in Chinese) [章程, 邵涛, 牛铮, 张东东, 王珏, 严萍 2012 61 035202]
Catalog
Metrics
- Abstract views: 6016
- PDF Downloads: 478
- Cited By: 0