-
In this paper, the process of glow discharge in magnetron sputtering is studied by the particle-in-cell with Monte Carlo collision method. The proposed model is a two-dimensional and self-consistent approach. The results show that the discharge mode transits from the negative space-charge-dominated mode to positive space-charge-dominated mode with working pressure increasing or magnetic field weakening. At the transition state, working pressure and magnetic field are 0.67 Pa and 0.05 T, respectively. Discharge current increases as the cathode voltage increases. When pressure increases, discharge current first increases and then tends to balance. When the pressure is higher than 2.5 Pa, current begins to decreases with the increase of the pressure.
-
Keywords:
- magnetron sputtering /
- glow discharge /
- computer simulation /
- state distribution
[1] Shon C H, Lee J K 2002 Appl. Surf. Sci. 192 258
[2] Kolev I, Bogaerts A 2009 J. Vac. Sci. Technol. A 27 20
[3] Li Y P, Liu Z T, Zhao H L, Liu W T, Yan F 2007 Acta Phys. Sin. 56 2937 (in Chinese) [李阳平, 刘正堂, 赵海龙, 刘文婷, 闫峰 2007 56 2937]
[4] Verboncoeur J P 2005 Plasma Phys. Contr. Fusion 47 A231
[5] Jin X L, Yang Z H 2006 Acta Phys. Sin. 55 5930 (in Chinese) [金晓林, 杨中海 2006 55 5930]
[6] Birdsall C K, Langdon A B 1985 Plasma Physics via Computer Simulation (New York: McGraw-Hill) p7
[7] Boswell R W, Morey I J 1988 Appl. Phys. Lett. 52 21
[8] Shon C H, Lee J K 1998 IEEE Trans. Plasma Sci. 26 1635
[9] Zhao H Y, Mu Z X 2008 Chin. Phys. B 17 1475
[10] Wasa K, Kitabatake M 2003 Thin Film Materials Technology (Berlin: Springer Publishing) p130
[11] Straaten T A, Cramer N F 1998 Appl. Phys. 31 177
[12] Kawamura E, Birdsall C K, Vahedi V 2000 Plasma Sources Sci. Technol. 9 413
[13] Yang C, Liu D G, Wang X M, Liu L Q, Wang X Q, Liu S G 2012 Acta Phys. Sin. (in Chinese) 61 145204 [杨超, 刘大刚, 王小敏, 刘腊群, 王学琼, 刘盛纲 2012 61 145204]
[14] Yuan Z C, Shi J M, Huang Y, Ma L 2008 Nuclear Fusion and Plasma Physics 28 281 (in Chinese) [袁忠才, 时家明, 黄勇, 马柳 2008 核聚变与等离子体物理 28 281]
-
[1] Shon C H, Lee J K 2002 Appl. Surf. Sci. 192 258
[2] Kolev I, Bogaerts A 2009 J. Vac. Sci. Technol. A 27 20
[3] Li Y P, Liu Z T, Zhao H L, Liu W T, Yan F 2007 Acta Phys. Sin. 56 2937 (in Chinese) [李阳平, 刘正堂, 赵海龙, 刘文婷, 闫峰 2007 56 2937]
[4] Verboncoeur J P 2005 Plasma Phys. Contr. Fusion 47 A231
[5] Jin X L, Yang Z H 2006 Acta Phys. Sin. 55 5930 (in Chinese) [金晓林, 杨中海 2006 55 5930]
[6] Birdsall C K, Langdon A B 1985 Plasma Physics via Computer Simulation (New York: McGraw-Hill) p7
[7] Boswell R W, Morey I J 1988 Appl. Phys. Lett. 52 21
[8] Shon C H, Lee J K 1998 IEEE Trans. Plasma Sci. 26 1635
[9] Zhao H Y, Mu Z X 2008 Chin. Phys. B 17 1475
[10] Wasa K, Kitabatake M 2003 Thin Film Materials Technology (Berlin: Springer Publishing) p130
[11] Straaten T A, Cramer N F 1998 Appl. Phys. 31 177
[12] Kawamura E, Birdsall C K, Vahedi V 2000 Plasma Sources Sci. Technol. 9 413
[13] Yang C, Liu D G, Wang X M, Liu L Q, Wang X Q, Liu S G 2012 Acta Phys. Sin. (in Chinese) 61 145204 [杨超, 刘大刚, 王小敏, 刘腊群, 王学琼, 刘盛纲 2012 61 145204]
[14] Yuan Z C, Shi J M, Huang Y, Ma L 2008 Nuclear Fusion and Plasma Physics 28 281 (in Chinese) [袁忠才, 时家明, 黄勇, 马柳 2008 核聚变与等离子体物理 28 281]
Catalog
Metrics
- Abstract views: 8744
- PDF Downloads: 587
- Cited By: 0