Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of edge reconstruction on the electron transport in zigzag graphene nanoribbon

Li Biao Xu Da-Hai Zeng Hui

Citation:

Influence of edge reconstruction on the electron transport in zigzag graphene nanoribbon

Li Biao, Xu Da-Hai, Zeng Hui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Edge reconstructions of graphene nanoribbons and their stable defective configurations were identified by experimental characterization. First principles calculations are performed to evaluate the effects of atomic edge arrangement on the electronic transport properties of zigzag graphene nanoribbons. It is found that these two defective edge structures affect effectively the high stable nanostructure configuration and give rise to pronounced modifications on electronic bands, leading to the shift of Fermi level as well as the occurrence of resonant energies. Both of these two atomic reconstructions would limit the electron transport around the Fermi level, and result in the complete resonant backscattering taking place at different locations. The suppression of conductance is not only related with increasing defect size, but more sensitive to the distribution of defect state, and the modifications on the electronic bands that are influenced by the edge reconstructions.
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 11304022, 11347010), the Scientific Research Foundation of the Higher Education Institutions of Hubei Province, China(Grant Nos. T201204, Q20131208), and the Foundation of Yangtze University for Outstanding Young Teachers, China (cyq201321, cyq201322).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [3]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [4]

    Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S 1996 Phys. Rev. B 54 17954

    [5]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [6]

    Geim A K 2009 Science 324 1530

    [7]

    Dresselhaus M S, Jorio A, Hofmann M, Dresselhaus G, Saito R 2010 Nano. Lett. 10 751

    [8]

    Enoki T, Kobayashi Y, Fukui K I 2007 Int. Rev. Phys. Chem. 26 609

    [9]

    Girit C Ö, Meyer J C, Erni R, Rossell M D, Kisielowski C, Yang L, Park C H, Crommie M F, Cohen M L, Louie S G, Zettl A 2009 Science 323 1705

    [10]

    Jia X, Hofmann M, Meunier V, Sumpter B G, Campos-Delgado J, Romo-Herrera J M, Son H, Hsieh Y P, Reina A, Kong J, Terrones M, Dresselhaus M S 2009 Science 323 1701

    [11]

    Koskinen P, Malola S, Häkkinen H 2009 Phys. Rev. B 80 073401

    [12]

    Koskinen P, Malola S, Häkkinen H 2008 Phys. Rev. Lett. 101 115502

    [13]

    Dubois S M M, Lopez-Bezanilla A, Cresti A, Triozon F, Biel B, Charlier J C, Roche S 2010 ACS Nano 4 1971

    [14]

    Zeng H, Zhao J, Wei J W 2011 Eur. Phys. J. Appl. Phys. 53 20602

    [15]

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 (in Chinese)[王雪梅, 刘红 2011 60 047102]

    [16]

    Krasheninnikov A V, Nordlund K 2010 J. Appl. Phys. 107 071301

    [17]

    Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F, Zettl A 2008 Nano Lett. 8 3582

    [18]

    Ren Y, Chen K Q 2010 J. Appl. Phys. 107 044514

    [19]

    Wang Z Y, Hu H F, Gu L, Wang W, Jia J F 2011 Acta Phys. Sin. 60 017102 (in Chinese)[王志勇, 胡慧芳, 顾林, 王巍, 贾金凤 2011 60 017102]

    [20]

    Lei S L, Li B, Huang J, Li Q X, Yang J L 2013 Chinese Phys. Lett. 30 077502

    [21]

    Xiao J, Yang Z X, Xie W T, Xiao L X, Xu H, OuYang F P 2012 Chin. Phys. B 21 027102

    [22]

    Banhart F, Kotakoski J, Krasheninnikov A V 2011 ACS Nano 5 26

    [23]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [24]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [25]

    Ordejón P, Artacho E, Soler J M 1996 Phys. Rev. B 53 10441

    [26]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Portal D S 2002 J. Phys: Condens. Matter. 14 2745

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [28]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993

    [29]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [30]

    Datta S 2005 Quantum Transport: Atom to Transistor (New York: Cambridge University Press) pp232-240

    [31]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [32]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [33]

    Stone A J, Wales D J 1986 Chem. Phys. Lett. 128 501

    [34]

    Zeng H, Leburton J P, Hu H F, Wei J W 2011 Solid State Commun. 151 9

    [35]

    Zeng H, Leburton J P, Xu Y, Wei J W 2011 Nanoscale Res. Lett. 6 254

    [36]

    Topsakal M, Aktrk E, Sevincli H, Ciraci S 2008 Phys. Rev. B 78 235435

    [37]

    Biel B, Blase X, Triozon F, Roche S 2009 Phys. Rev. Lett. 102 096803

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [3]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [4]

    Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S 1996 Phys. Rev. B 54 17954

    [5]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [6]

    Geim A K 2009 Science 324 1530

    [7]

    Dresselhaus M S, Jorio A, Hofmann M, Dresselhaus G, Saito R 2010 Nano. Lett. 10 751

    [8]

    Enoki T, Kobayashi Y, Fukui K I 2007 Int. Rev. Phys. Chem. 26 609

    [9]

    Girit C Ö, Meyer J C, Erni R, Rossell M D, Kisielowski C, Yang L, Park C H, Crommie M F, Cohen M L, Louie S G, Zettl A 2009 Science 323 1705

    [10]

    Jia X, Hofmann M, Meunier V, Sumpter B G, Campos-Delgado J, Romo-Herrera J M, Son H, Hsieh Y P, Reina A, Kong J, Terrones M, Dresselhaus M S 2009 Science 323 1701

    [11]

    Koskinen P, Malola S, Häkkinen H 2009 Phys. Rev. B 80 073401

    [12]

    Koskinen P, Malola S, Häkkinen H 2008 Phys. Rev. Lett. 101 115502

    [13]

    Dubois S M M, Lopez-Bezanilla A, Cresti A, Triozon F, Biel B, Charlier J C, Roche S 2010 ACS Nano 4 1971

    [14]

    Zeng H, Zhao J, Wei J W 2011 Eur. Phys. J. Appl. Phys. 53 20602

    [15]

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 (in Chinese)[王雪梅, 刘红 2011 60 047102]

    [16]

    Krasheninnikov A V, Nordlund K 2010 J. Appl. Phys. 107 071301

    [17]

    Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F, Zettl A 2008 Nano Lett. 8 3582

    [18]

    Ren Y, Chen K Q 2010 J. Appl. Phys. 107 044514

    [19]

    Wang Z Y, Hu H F, Gu L, Wang W, Jia J F 2011 Acta Phys. Sin. 60 017102 (in Chinese)[王志勇, 胡慧芳, 顾林, 王巍, 贾金凤 2011 60 017102]

    [20]

    Lei S L, Li B, Huang J, Li Q X, Yang J L 2013 Chinese Phys. Lett. 30 077502

    [21]

    Xiao J, Yang Z X, Xie W T, Xiao L X, Xu H, OuYang F P 2012 Chin. Phys. B 21 027102

    [22]

    Banhart F, Kotakoski J, Krasheninnikov A V 2011 ACS Nano 5 26

    [23]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [24]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [25]

    Ordejón P, Artacho E, Soler J M 1996 Phys. Rev. B 53 10441

    [26]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Portal D S 2002 J. Phys: Condens. Matter. 14 2745

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [28]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993

    [29]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [30]

    Datta S 2005 Quantum Transport: Atom to Transistor (New York: Cambridge University Press) pp232-240

    [31]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [32]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [33]

    Stone A J, Wales D J 1986 Chem. Phys. Lett. 128 501

    [34]

    Zeng H, Leburton J P, Hu H F, Wei J W 2011 Solid State Commun. 151 9

    [35]

    Zeng H, Leburton J P, Xu Y, Wei J W 2011 Nanoscale Res. Lett. 6 254

    [36]

    Topsakal M, Aktrk E, Sevincli H, Ciraci S 2008 Phys. Rev. B 78 235435

    [37]

    Biel B, Blase X, Triozon F, Roche S 2009 Phys. Rev. Lett. 102 096803

  • [1] Ding Jin-Ting, Hu Pei-Jia, Guo Ai-Min. Electron transport in graphene nanoribbons with line defects. Acta Physica Sinica, 2023, 72(15): 157301. doi: 10.7498/aps.72.20230502
    [2] He Yan-Bin, Bai Xi. Electron transport of one-dimensional non-conjugated (CH2)n molecule chain coupling to graphene electrode. Acta Physica Sinica, 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [3] Zuo Min, Liao Wen-Hu, Wu Dan, Lin Li-E. Electron transport properties of isomeric quinoline molecule junction sandwiched between graphene nanoribbon electrodes. Acta Physica Sinica, 2019, 68(23): 237302. doi: 10.7498/aps.68.20191154
    [4] Liang Jin-Tao, Yan Xiao-Hong, Zhang Ying, Xiao Yang. Non-collinear magnetism and electronic transport of boron or nitrogen doped zigzag graphene nanoribbon. Acta Physica Sinica, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [5] Zhang Hua-Lin, Sun Lin, Han Jia-Ning. Magneto-electronic properties of zigzag graphene nanoribbons doped with triangular boron nitride segment. Acta Physica Sinica, 2017, 66(24): 246101. doi: 10.7498/aps.66.246101
    [6] Deng Xiao-Qing, Sun Lin, Li Chun-Xian. Spin transport properties for iron-doped zigzag-graphene nanoribbons interface. Acta Physica Sinica, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [7] Liu Fu-Ti, Cheng Yan, Chen Xiang-Rong, Cheng Xiao-Hong. Calculation of electron transport in GaAs nanoscale junctions using first-principles. Acta Physica Sinica, 2014, 63(13): 137303. doi: 10.7498/aps.63.137303
    [8] Jin Feng, Zhang Zhen-Hua, Wang Cheng-Zhi, Deng Xiao-Qing, Fan Zhi-Qiang. Twisting effects on energy band structures and transmission behaviors of graphene nanoribbons. Acta Physica Sinica, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [9] Deng Xiao-Qing, Yang Chang-Hu, Zhang Hua-Lin. The electronic transport properties affected by B/N doping in graphene-based molecular devices. Acta Physica Sinica, 2013, 62(18): 186102. doi: 10.7498/aps.62.186102
    [10] Li Jun, Zhang Zhen-Hua, Wang Chen-Zhi, Deng Xiao-Qing, Fan Zhi-Qiang. Rolling effects on electronic characteristics for graphene nanoribbons. Acta Physica Sinica, 2013, 62(5): 056103. doi: 10.7498/aps.62.056103
    [11] Zeng Yong-Chang, Tian Wen, Zhang Zhen-Hua. Electronic properties of graphene nanoribbons with periodical nanoholes passivated by oxygen. Acta Physica Sinica, 2013, 62(23): 236102. doi: 10.7498/aps.62.236102
    [12] Hu Fei, Duan Ling, Ding Jian-Wen. Electronic transport in hybrid contact of doubly-stacked zigzag graphene nanoribbons. Acta Physica Sinica, 2012, 61(7): 077201. doi: 10.7498/aps.61.077201
    [13] Duan Ling, Hu Fei, Ding Jian-Wen. Effects of gradient disorder on electronic transport in quasi-one-dimensional nanowires. Acta Physica Sinica, 2011, 60(11): 117201. doi: 10.7498/aps.60.117201
    [14] Zheng Ji-Ming, Zhao Pei, Chen You-Wei, Ren Zhao-Yu, Guo Ping. Theoretical investigation on electron transport properties of singlewall carbon nanotube with oxygen molecular absorption. Acta Physica Sinica, 2011, 60(6): 068501. doi: 10.7498/aps.60.068501
    [15] Wang Zhi-Yong, Hu Hui-Fang, Gu Lin, Wang Wei, Jia Jin-Feng. Electronic and optical properties of zigzag graphene nanoribbon with Stone-Wales defect. Acta Physica Sinica, 2011, 60(1): 017102. doi: 10.7498/aps.60.017102
    [16] Zhang Mi, Chen Yuan-Ping, Zhang Zai-Lan, Ouyang Tao, Zhong Jian-Xin. The effect of stacked graphene flakes on the electronic transport of zigzag-edged graphene nanoribbons. Acta Physica Sinica, 2011, 60(12): 127204. doi: 10.7498/aps.60.127204
    [17] Tao Qiang, Hu Xiao-Ying, Zhu Pin-Wen. Electronic structure of zigzag graphene nanoribbin terminated by hydroxyl. Acta Physica Sinica, 2011, 60(9): 097301. doi: 10.7498/aps.60.097301
    [18] Lin Qi, Chen Yu-Hang, Wu Jian-Bao, Kong Zong-Min. Effect of N-doping on band structure and transport property of zigzag graphene nanoribbons. Acta Physica Sinica, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [19] Wang Li-Guang, Zhang Hong-Yu, Wang Chang, Terence K. S. W.. Electronic conductance of zigzag single wall carbon nanotube with an implanted Li atom. Acta Physica Sinica, 2010, 59(1): 536-540. doi: 10.7498/aps.59.536
    [20] Hu Hai-Xin, Zhang Zhen-Hua, Liu Xin-Hai, Qiu Ming, Ding Kai-He. Tight binding studies on the electronic structure of graphene nanoribbons. Acta Physica Sinica, 2009, 58(10): 7156-7161. doi: 10.7498/aps.58.7156
Metrics
  • Abstract views:  6689
  • PDF Downloads:  761
  • Cited By: 0
Publishing process
  • Received Date:  31 December 2013
  • Accepted Date:  25 February 2014
  • Published Online:  05 June 2014

/

返回文章
返回
Baidu
map