搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锯齿型石墨纳米带叠层复合结的电子输运

胡飞 段玲 丁建文

引用本文:
Citation:

锯齿型石墨纳米带叠层复合结的电子输运

胡飞, 段玲, 丁建文

Electronic transport in hybrid contact of doubly-stacked zigzag graphene nanoribbons

Hu Fei, Duan Ling, Ding Jian-Wen
PDF
导出引用
  • 基于紧束缚格林函数方法,研究了两半无限长锯齿型石墨纳米带叠层复合结的电子输运性质.结果表明,层间次近邻相互作用、叠层区长度及门电压对复合结的电子透射谱有重要调制作用.层间次近邻相互作用导致复合结的透射谱关于费米能呈现非对称性,与实验结果很好相符.低于费米能第一子能区内周期性出现透射系数为0和1的台阶,呈现全反射与透射现象.随散射结长度增加,透射系数在1内周期性振荡,呈现明显的量子干涉效应.在门电压调控下,低于费米能的透射系数出现了从1到0的转变,类似于开关效应.相关结果对基于石墨烯器件的设计与应用有指导意义.
    According to a tight-binding model and the Green's function formalism, we investigate the electronic transport in hybrid contact of doubly stacked zigzag graphene nanoribbons. Our study shows that the next nearest neighbor interlayer coupling, the hybrid contact length and gate voltage each have a significant modulation effect on the electron transmission spectrum. Due to the next nearest neighbor interlayer coupling, the transmission spectrum of the hybrid contact exhibits an electron-hole asymmetry, which is consistent with the experimental result. There exist some transmission gap (T=0) and quantum step (T=1) within the first subband below the Fermi energy, meaning that electrons can reflect and/or transmit completely. It is also observed that the transmission coefficient oscillates within 1 as the contact length increases, showing a quantum interference effect. Under a gate voltage in the bilayer regime, the transmission coefficient can be changed from 1 to 0, showing that a switching effect exists here. The results is useful for the design and the application of the graphene-based device.
    • 基金项目: 国家自然科学基金(批准号:10674113;11074212);全国优秀博士学位论文作者专项基金(批准号:200726)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10674113 and 11074212), and the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200726).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]
    [3]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [4]

    Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nano 3 206

    [5]
    [6]

    Moser J, Barreiro A, Bachtold A 2007 Appl. Phys. Lett. 91 163513

    [7]
    [8]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [9]
    [10]
    [11]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J-H, Kim P, Choi J-Y, Hong B H 2009 Nature 457 706

    [12]
    [13]

    Murali R, Brenner K, Yang Y, Beck T, Meindl J 2009 IEEE Electron Dev. Lett. 30 611

    [14]

    Oostinga J B, Heersche H B, Liu X, Morpurgo A F, Vandersypen L M K 2008 Nat. Mater. 7 151

    [15]
    [16]

    Schwierz F 2010 Nat. Nano 5 487

    [17]
    [18]

    Lin Y M, Avouris P 2008 Nano Lett. 8 2119

    [19]
    [20]
    [21]

    Xu H, Heinzel T, Zozoulenko I V 2009 Phys. Rev. B 80 045308

    [22]
    [23]

    Areshkin D A, White C T 2007 Nano Lett. 7 3253

    [24]
    [25]

    Rotenberg E, Bostwick A, Ohta T, McChesney J L, Seyller T, Horn K 2008 Nat. Mater. 7 258

    [26]
    [27]

    Puls C P, Staley N E, Liu Y 2009 Phys. Rev. B 79 235415

    [28]

    Nilsson J, Castro Neto A H, Guinea F, Peres N M R 2007 Phys. Rev. B 76 165416

    [29]
    [30]

    Nakanishi T, Koshino M, Ando T 2010 Phys. Rev. B 82 125428

    [31]
    [32]
    [33]

    Koshino M, Nakanishi T, Ando T 2010 Phys. Rev. B 82 205436

    [34]

    Gonzlez J W, Santos H, Pacheco M, Chico L, Brey L 2010 Phys. Rev. B 81 195406

    [35]
    [36]

    Mucha-Kruczyński M, McCann E, Falko V I 2010 Semicond. Sci. Technol. 25 033001

    [37]
    [38]

    Castro E, Novoselov K, Morozov S, Peres N, Santos J, Nilsson J, Guinea F, Geim A, Neto A 2010 J. Phys. Condens. Matter 22 175503

    [39]
    [40]
    [41]

    Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L, Basov D N 2009 Phys. Rev. Lett. 102 037403

    [42]
    [43]

    Wright A, Liu F, Zhang C 2009 Nanotechnology 20 405203

    [44]

    Cortijo A, Oroszlny L, Schomerus H 2010 Phys. Rev. B 81 235422

    [45]
    [46]
    [47]

    Rhim J-W, Moon K 2008 J. Phys. Condens. Matter 20 365202

    [48]
    [49]

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 (in Chinese) [王雪梅, 刘红 2011 60 047102]

    [50]
    [51]

    Kuzmenko A B, Crassee I, van der Marel D, Blake P, Novoselov K S 2009 Phys. Rev. B 80 165406

    [52]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951

    [53]
    [54]
    [55]

    Xu H, Heinzel T, Evaldsson M, Zozoulenko I V 2008 Phys. Rev. B 77 245401

    [56]

    Xu N, Ding J W, Xing D Y 2008 J. Appl. Phys. 103 083710

    [57]
    [58]

    Bttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207

    [59]
    [60]

    Jin Z F, Tong G P, Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese) [金子飞, 童国平, 蒋永进 2009 58 8537]

    [61]
    [62]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱明, 丁开和 2009 58 7156]

    [63]
    [64]

    Kuzmenko A B, van Heumen E, van der Marel D, Lerch P, Blake P, Novoselov K S, Geim A K 2009 Phys. Rev. B 79 115441

    [65]
    [66]
    [67]

    Buia C, Buldum A, Lu J P 2003 Phys. Rev. B 67 113409

    [68]
    [69]

    Liu Q, Luo G, Qin R, Li H, Yan X, Xu C, Lai L, Zhou J, Hou S, Wang E 2011 Phys. Rev. B 83 155442

    [70]
    [71]

    Liu Q, Yu L, Li H, Qin R, Jing Z, Zheng J, Gao Z, Lu J 2011 J. Phys. Chem. C 115 6933

    [72]
    [73]

    Liao L, Bai J, Cheng R, Lin Y C, Jiang S, Qu Y, Huang Y, Duan X 2010 Nano Lett. 10 3952

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]
    [3]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [4]

    Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nano 3 206

    [5]
    [6]

    Moser J, Barreiro A, Bachtold A 2007 Appl. Phys. Lett. 91 163513

    [7]
    [8]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [9]
    [10]
    [11]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J-H, Kim P, Choi J-Y, Hong B H 2009 Nature 457 706

    [12]
    [13]

    Murali R, Brenner K, Yang Y, Beck T, Meindl J 2009 IEEE Electron Dev. Lett. 30 611

    [14]

    Oostinga J B, Heersche H B, Liu X, Morpurgo A F, Vandersypen L M K 2008 Nat. Mater. 7 151

    [15]
    [16]

    Schwierz F 2010 Nat. Nano 5 487

    [17]
    [18]

    Lin Y M, Avouris P 2008 Nano Lett. 8 2119

    [19]
    [20]
    [21]

    Xu H, Heinzel T, Zozoulenko I V 2009 Phys. Rev. B 80 045308

    [22]
    [23]

    Areshkin D A, White C T 2007 Nano Lett. 7 3253

    [24]
    [25]

    Rotenberg E, Bostwick A, Ohta T, McChesney J L, Seyller T, Horn K 2008 Nat. Mater. 7 258

    [26]
    [27]

    Puls C P, Staley N E, Liu Y 2009 Phys. Rev. B 79 235415

    [28]

    Nilsson J, Castro Neto A H, Guinea F, Peres N M R 2007 Phys. Rev. B 76 165416

    [29]
    [30]

    Nakanishi T, Koshino M, Ando T 2010 Phys. Rev. B 82 125428

    [31]
    [32]
    [33]

    Koshino M, Nakanishi T, Ando T 2010 Phys. Rev. B 82 205436

    [34]

    Gonzlez J W, Santos H, Pacheco M, Chico L, Brey L 2010 Phys. Rev. B 81 195406

    [35]
    [36]

    Mucha-Kruczyński M, McCann E, Falko V I 2010 Semicond. Sci. Technol. 25 033001

    [37]
    [38]

    Castro E, Novoselov K, Morozov S, Peres N, Santos J, Nilsson J, Guinea F, Geim A, Neto A 2010 J. Phys. Condens. Matter 22 175503

    [39]
    [40]
    [41]

    Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L, Basov D N 2009 Phys. Rev. Lett. 102 037403

    [42]
    [43]

    Wright A, Liu F, Zhang C 2009 Nanotechnology 20 405203

    [44]

    Cortijo A, Oroszlny L, Schomerus H 2010 Phys. Rev. B 81 235422

    [45]
    [46]
    [47]

    Rhim J-W, Moon K 2008 J. Phys. Condens. Matter 20 365202

    [48]
    [49]

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102 (in Chinese) [王雪梅, 刘红 2011 60 047102]

    [50]
    [51]

    Kuzmenko A B, Crassee I, van der Marel D, Blake P, Novoselov K S 2009 Phys. Rev. B 80 165406

    [52]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951

    [53]
    [54]
    [55]

    Xu H, Heinzel T, Evaldsson M, Zozoulenko I V 2008 Phys. Rev. B 77 245401

    [56]

    Xu N, Ding J W, Xing D Y 2008 J. Appl. Phys. 103 083710

    [57]
    [58]

    Bttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207

    [59]
    [60]

    Jin Z F, Tong G P, Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese) [金子飞, 童国平, 蒋永进 2009 58 8537]

    [61]
    [62]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱明, 丁开和 2009 58 7156]

    [63]
    [64]

    Kuzmenko A B, van Heumen E, van der Marel D, Lerch P, Blake P, Novoselov K S, Geim A K 2009 Phys. Rev. B 79 115441

    [65]
    [66]
    [67]

    Buia C, Buldum A, Lu J P 2003 Phys. Rev. B 67 113409

    [68]
    [69]

    Liu Q, Luo G, Qin R, Li H, Yan X, Xu C, Lai L, Zhou J, Hou S, Wang E 2011 Phys. Rev. B 83 155442

    [70]
    [71]

    Liu Q, Yu L, Li H, Qin R, Jing Z, Zheng J, Gao Z, Lu J 2011 J. Phys. Chem. C 115 6933

    [72]
    [73]

    Liao L, Bai J, Cheng R, Lin Y C, Jiang S, Qu Y, Huang Y, Duan X 2010 Nano Lett. 10 3952

  • [1] 周展辉, 李群, 贺小敏. AlN/β-Ga2O3异质结电子输运机制.  , 2023, 72(2): 028501. doi: 10.7498/aps.72.20221545
    [2] 贺艳斌, 白熙. 一维线性非共轭石墨烯基(CH2)n分子链的电子输运.  , 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [3] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质.  , 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [4] 柳福提, 张淑华, 程艳, 陈向荣, 程晓洪. (GaAs)n(n=1-4)原子链电子输运性质的理论计算.  , 2016, 65(10): 106201. doi: 10.7498/aps.65.106201
    [5] 柳福提, 程艳, 陈向荣, 程晓洪. GaAs纳米结点电子输运性质的第一性原理计算.  , 2014, 63(13): 137303. doi: 10.7498/aps.63.137303
    [6] 柳福提, 程艳, 陈向荣, 程晓洪, 曾志强. Au-Si60-Au分子结电子输运性质的理论计算.  , 2014, 63(17): 177304. doi: 10.7498/aps.63.177304
    [7] 李彪, 徐大海, 曾晖. 边缘重构对锯齿型石墨烯纳米带电子输运的影响.  , 2014, 63(11): 117102. doi: 10.7498/aps.63.117102
    [8] 柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣. Si4团簇电子输运性质的第一性原理计算.  , 2013, 62(14): 140504. doi: 10.7498/aps.62.140504
    [9] 柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣. Au-Si-Au结点电子输运性质的第一性原理计算.  , 2013, 62(10): 107401. doi: 10.7498/aps.62.107401
    [10] 邓小清, 杨昌虎, 张华林. B/N掺杂对于石墨烯纳米片电子输运的影响.  , 2013, 62(18): 186102. doi: 10.7498/aps.62.186102
    [11] 段玲, 胡飞, 丁建文. 准一维纳米线电子输运的梯度无序效应.  , 2011, 60(11): 117201. doi: 10.7498/aps.60.117201
    [12] 赵佩, 郑继明, 陈有为, 郭平, 任兆玉. 单壁碳纳米管吸附氧分子的电子输运性质理论研究.  , 2011, 60(6): 068501. doi: 10.7498/aps.60.068501
    [13] 张迷, 陈元平, 张再兰, 欧阳滔, 钟建新. 堆叠石墨片对锯齿型石墨纳米带电子输运的影响.  , 2011, 60(12): 127204. doi: 10.7498/aps.60.127204
    [14] 王利光, 张鸿宇, 王畅, Terence K. S. W.. 嵌入锂原子的zigzag型单壁碳纳米管的电子传导特性.  , 2010, 59(1): 536-540. doi: 10.7498/aps.59.536
    [15] 郑新亮, 郑继明, 任兆玉, 郭平, 田进寿, 白晋涛. 钽硅团簇电子输运性质的第一性原理研究.  , 2009, 58(8): 5709-5715. doi: 10.7498/aps.58.5709
    [16] 欧阳方平, 王晓军, 张华, 肖金, 陈灵娜, 徐慧. 扶手椅型石墨纳米带的双空位缺陷效应研究.  , 2009, 58(8): 5640-5644. doi: 10.7498/aps.58.5640
    [17] 欧阳方平, 徐慧, 林峰. 双空位缺陷石墨纳米带的电子结构和输运性质研究.  , 2009, 58(6): 4132-4136. doi: 10.7498/aps.58.4132
    [18] 牛秀明, 齐元华. 分子结点电子输运性质的理论研究.  , 2008, 57(11): 6926-6931. doi: 10.7498/aps.57.6926
    [19] 欧阳方平, 徐 慧, 魏 辰. Zigzag型石墨纳米带电子结构和输运性质的第一性原理研究.  , 2008, 57(2): 1073-1077. doi: 10.7498/aps.57.1073
    [20] 欧阳方平, 王焕友, 李明君, 肖 金, 徐 慧. 单空位缺陷对石墨纳米带电子结构和输运性质的影响.  , 2008, 57(11): 7132-7138. doi: 10.7498/aps.57.7132
计量
  • 文章访问数:  7194
  • PDF下载量:  714
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-26
  • 修回日期:  2012-04-05
  • 刊出日期:  2012-04-05

/

返回文章
返回
Baidu
map