搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

堆叠石墨片对锯齿型石墨纳米带电子输运的影响

张迷 陈元平 张再兰 欧阳滔 钟建新

引用本文:
Citation:

堆叠石墨片对锯齿型石墨纳米带电子输运的影响

张迷, 陈元平, 张再兰, 欧阳滔, 钟建新

The effect of stacked graphene flakes on the electronic transport of zigzag-edged graphene nanoribbons

Zhang Mi, Chen Yuan-Ping, Zhang Zai-Lan, Ouyang Tao, Zhong Jian-Xin
PDF
导出引用
  • 采用格林函数方法研究了堆叠石墨片对锯齿型石墨纳米带电子输运性质的影响,计算了两种不同堆叠方式下锯齿型石墨纳米带的电导.研究发现,由于堆叠石墨片与石墨纳米带的耦合作用,锯齿型石墨纳米带的电导谱出现了电导谷.在远离费米能处,两种堆叠方式下的电导谷位置相近甚至重合;而在费米能附近,两种堆叠方式下的电导谷存在差异.此外,讨论了堆叠石墨片的几何尺寸对锯齿型石墨纳米带电子输运的影响.结果显示,随石墨片几何尺寸的增大,锯齿型石墨纳米带在两种堆叠方式下远离费米能处的电导谷逐渐向费米能方向移动,同时其费米能附近的电导谷在两种堆叠方式下的差异随石墨片尺寸的增大变得更为明显.研究结果表明,堆叠石墨片能够有效地调制锯齿型石墨纳米带的电子输运性质.
    The effect of stacked graphene flakes (GFs) on the electronic transport property of zigzag-edged graphene nanoribbon (ZGNR) is investigated. By using the Greens function method, we calculate the conductances of ZGNRs with two different stacked-type GFs. It is found that the coupling effect between ZGNRs and GFs can induce dips at the conductance profiles in two different stacked-types. For both stacked-types, the dips far away from the Fermi level are nearly overlapped. However, the position of conductance dip near the Fermi level depends on the stacked-type. In addition, we discuss the effect of geometric size of GF on the electronic transport property. The results show that with the increase of the size of GF, the dips far away the Fermi level in two stacked-types gradually move toward the Fermi level, while the discrepancy of the dips near the Fermi level is much evident. Our results indicate that the stacked GFs can effectively tune the electronic transport of ZGNR.
    • 基金项目: 国家自然科学基金(批准号: 51006086,11074213,10774127)和教育部科技创新工程重大项目培育基金(批准号: 708068)资助的课题.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]
    [3]

    Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, Firsr P N, de Heer W A 2006 Science 312 1191

    [4]
    [5]

    Li X L, Wang X R, Zhang L, Lee S, Dai H J 2008 Science 319 1229

    [6]

    Bai J W, Duan X F, Huang Y 2009 Nano Lett. 9 2083

    [7]
    [8]

    Wang X R, Dai H J 2010 Nat. Chem. 2 661

    [9]
    [10]

    Reina A, Jia X T, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30

    [11]
    [12]
    [13]

    Liu S P, Zhou F, Jin A Z, Yang H F, Ma Y J, Li H, Gu C Z, L L, Jiang B, Zheng Q S, Wang S, Peng L M 2005 Acta Phys. Sin. 54 4251 (in Chinese) [刘首鹏、周 锋、金爱子、杨海方、马拥军、李 辉、顾长志、吕 力、姜 博、郑泉水、王 胜、彭练矛 2005 54 4251]

    [14]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [15]
    [16]

    Wakabayashi K, Fujita M, Ajiki H, Sigrist M 1999 Phys. Rev. B 59 8271

    [17]
    [18]

    Sahu B, Min H, MacDonald A H, Banerjee S K 2008 Phys. Rev. B 78 045404

    [19]
    [20]
    [21]

    Ouyang T, Chen Y P, Xie Y E, Yang K K, Zhong J X 2010 Solid State Commun. 150 2366

    [22]
    [23]

    Yang K K, Chen Y P, Xie Y E, Ouyang T, Zhong J X 2010 Europhys. Lett. 91 46006

    [24]

    Hu H, Cai J M, Zhang C D, Gao M, Pan Y, Du S X, Sun Q F, Niu Q, Xie X C, Gao H J 2010 Chin. Phys. B 19 037202

    [25]
    [26]
    [27]

    Nakada K, Fujita M 1996 Phys. Rev. B 54 17954

    [28]
    [29]

    Ezawa M 2006 Phys. Rev. B 73 045432

    [30]
    [31]

    Zhang X W, Yang G W 2009 J. Phys. Chem. C 113 4662

    [32]
    [33]

    Zhou B H, Duan Z G, Zhou B L, Zhou G H 2010 Chin. Phys. B 19 037204

    [34]

    Ouyang F P, Xu H, Wei C 2008 Acta Phys. Sin. 57 1073 (in Chinese) [欧阳方平、徐 惠、魏 辰 2008 57 1073]

    [35]
    [36]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫、张振华、刘新海、邱 明、丁开和 2009 58 7156]

    [37]
    [38]
    [39]

    Jiang D, Sumpter B G, Dai S 2007 J. Chem. Phys. 127 124703

    [40]
    [41]

    Wang W L, Meng S, Kaxiras E 2008 Nano Lett. 8 241

    [42]
    [43]

    Hod O, Peralta J E, Scuseria G E 2007 Phys. Rev. B 76 233401

    [44]

    Hod O, Barone V, Scuseria G E 2008 Phys. Rev. B 77 035411

    [45]
    [46]

    Kuc A, Heine T 2010 Phys. Rev. B 81 085430

    [47]
    [48]

    Chen Y P, Xie Y E, Wei X L, Sun L Z, Zhong J X 2010 Solid State Commun. 150 675

    [49]
    [50]
    [51]

    Pan H Z, Xu M, Chen L, Sun Y Y, Wang Y L 2010 Acta Phys. Sin. 59 6443 (in Chinese) [潘洪哲、徐 明、陈 丽、孙媛媛、王永龙 2010 59 6443]

    [52]
    [53]

    Nilsson J, Neto A H C, Guinea F, Peres N M R 2007 Phys. Rev. B 76 165416

    [54]
    [55]

    Gonzlez J W, Santos H, Pacheco M, Chico L, Brey L 2010 Phys. Rev. B 81 195406

    [56]

    Chen Y P, Xie Y E, Yan X H 2008 J. Appl. Phys. 103 063711

    [57]
    [58]
    [59]

    Reich S, Maultzsch J, Thomsen C 2002 Phys. Rev. B 66 035412

    [60]
    [61]

    Malard L M, Nilsson J, Elias D C, Brant J C, Plentz F, Alves E S, Neto A H C, Pimenta M A 2007 Phys. Rev. B 76 201401

    [62]
    [63]

    Datta S 1997 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) p132

    [64]

    Jdar E, Prez-Garrido A, Daz-Snchez A 2006 Phys. Rev. B 73 205403

    [65]
    [66]
    [67]

    Sols F, Macucci M, Ravaioli U, Hess K 1989 J. Appl. Phys. 66 3892

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]
    [3]

    Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, Firsr P N, de Heer W A 2006 Science 312 1191

    [4]
    [5]

    Li X L, Wang X R, Zhang L, Lee S, Dai H J 2008 Science 319 1229

    [6]

    Bai J W, Duan X F, Huang Y 2009 Nano Lett. 9 2083

    [7]
    [8]

    Wang X R, Dai H J 2010 Nat. Chem. 2 661

    [9]
    [10]

    Reina A, Jia X T, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30

    [11]
    [12]
    [13]

    Liu S P, Zhou F, Jin A Z, Yang H F, Ma Y J, Li H, Gu C Z, L L, Jiang B, Zheng Q S, Wang S, Peng L M 2005 Acta Phys. Sin. 54 4251 (in Chinese) [刘首鹏、周 锋、金爱子、杨海方、马拥军、李 辉、顾长志、吕 力、姜 博、郑泉水、王 胜、彭练矛 2005 54 4251]

    [14]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [15]
    [16]

    Wakabayashi K, Fujita M, Ajiki H, Sigrist M 1999 Phys. Rev. B 59 8271

    [17]
    [18]

    Sahu B, Min H, MacDonald A H, Banerjee S K 2008 Phys. Rev. B 78 045404

    [19]
    [20]
    [21]

    Ouyang T, Chen Y P, Xie Y E, Yang K K, Zhong J X 2010 Solid State Commun. 150 2366

    [22]
    [23]

    Yang K K, Chen Y P, Xie Y E, Ouyang T, Zhong J X 2010 Europhys. Lett. 91 46006

    [24]

    Hu H, Cai J M, Zhang C D, Gao M, Pan Y, Du S X, Sun Q F, Niu Q, Xie X C, Gao H J 2010 Chin. Phys. B 19 037202

    [25]
    [26]
    [27]

    Nakada K, Fujita M 1996 Phys. Rev. B 54 17954

    [28]
    [29]

    Ezawa M 2006 Phys. Rev. B 73 045432

    [30]
    [31]

    Zhang X W, Yang G W 2009 J. Phys. Chem. C 113 4662

    [32]
    [33]

    Zhou B H, Duan Z G, Zhou B L, Zhou G H 2010 Chin. Phys. B 19 037204

    [34]

    Ouyang F P, Xu H, Wei C 2008 Acta Phys. Sin. 57 1073 (in Chinese) [欧阳方平、徐 惠、魏 辰 2008 57 1073]

    [35]
    [36]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫、张振华、刘新海、邱 明、丁开和 2009 58 7156]

    [37]
    [38]
    [39]

    Jiang D, Sumpter B G, Dai S 2007 J. Chem. Phys. 127 124703

    [40]
    [41]

    Wang W L, Meng S, Kaxiras E 2008 Nano Lett. 8 241

    [42]
    [43]

    Hod O, Peralta J E, Scuseria G E 2007 Phys. Rev. B 76 233401

    [44]

    Hod O, Barone V, Scuseria G E 2008 Phys. Rev. B 77 035411

    [45]
    [46]

    Kuc A, Heine T 2010 Phys. Rev. B 81 085430

    [47]
    [48]

    Chen Y P, Xie Y E, Wei X L, Sun L Z, Zhong J X 2010 Solid State Commun. 150 675

    [49]
    [50]
    [51]

    Pan H Z, Xu M, Chen L, Sun Y Y, Wang Y L 2010 Acta Phys. Sin. 59 6443 (in Chinese) [潘洪哲、徐 明、陈 丽、孙媛媛、王永龙 2010 59 6443]

    [52]
    [53]

    Nilsson J, Neto A H C, Guinea F, Peres N M R 2007 Phys. Rev. B 76 165416

    [54]
    [55]

    Gonzlez J W, Santos H, Pacheco M, Chico L, Brey L 2010 Phys. Rev. B 81 195406

    [56]

    Chen Y P, Xie Y E, Yan X H 2008 J. Appl. Phys. 103 063711

    [57]
    [58]
    [59]

    Reich S, Maultzsch J, Thomsen C 2002 Phys. Rev. B 66 035412

    [60]
    [61]

    Malard L M, Nilsson J, Elias D C, Brant J C, Plentz F, Alves E S, Neto A H C, Pimenta M A 2007 Phys. Rev. B 76 201401

    [62]
    [63]

    Datta S 1997 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) p132

    [64]

    Jdar E, Prez-Garrido A, Daz-Snchez A 2006 Phys. Rev. B 73 205403

    [65]
    [66]
    [67]

    Sols F, Macucci M, Ravaioli U, Hess K 1989 J. Appl. Phys. 66 3892

  • [1] 丁锦廷, 胡沛佳, 郭爱敏. 线缺陷石墨烯纳米带的电输运研究.  , 2023, 72(15): 157301. doi: 10.7498/aps.72.20230502
    [2] 胡海涛, 郭爱敏. 双层硼烯纳米带的量子输运研究.  , 2022, 71(22): 227301. doi: 10.7498/aps.71.20221304
    [3] 贺艳斌, 白熙. 一维线性非共轭石墨烯基(CH2)n分子链的电子输运.  , 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [4] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质.  , 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [5] 柳福提, 程艳, 陈向荣, 程晓洪. GaAs纳米结点电子输运性质的第一性原理计算.  , 2014, 63(13): 137303. doi: 10.7498/aps.63.137303
    [6] 李彪, 徐大海, 曾晖. 边缘重构对锯齿型石墨烯纳米带电子输运的影响.  , 2014, 63(11): 117102. doi: 10.7498/aps.63.117102
    [7] 柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣. Si4团簇电子输运性质的第一性原理计算.  , 2013, 62(14): 140504. doi: 10.7498/aps.62.140504
    [8] 柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣. Au-Si-Au结点电子输运性质的第一性原理计算.  , 2013, 62(10): 107401. doi: 10.7498/aps.62.107401
    [9] 邓小清, 杨昌虎, 张华林. B/N掺杂对于石墨烯纳米片电子输运的影响.  , 2013, 62(18): 186102. doi: 10.7498/aps.62.186102
    [10] 胡飞, 段玲, 丁建文. 锯齿型石墨纳米带叠层复合结的电子输运.  , 2012, 61(7): 077201. doi: 10.7498/aps.61.077201
    [11] 段玲, 胡飞, 丁建文. 准一维纳米线电子输运的梯度无序效应.  , 2011, 60(11): 117201. doi: 10.7498/aps.60.117201
    [12] 赵佩, 郑继明, 陈有为, 郭平, 任兆玉. 单壁碳纳米管吸附氧分子的电子输运性质理论研究.  , 2011, 60(6): 068501. doi: 10.7498/aps.60.068501
    [13] 王利光, 张鸿宇, 王畅, Terence K. S. W.. 嵌入锂原子的zigzag型单壁碳纳米管的电子传导特性.  , 2010, 59(1): 536-540. doi: 10.7498/aps.59.536
    [14] 郑新亮, 郑继明, 任兆玉, 郭平, 田进寿, 白晋涛. 钽硅团簇电子输运性质的第一性原理研究.  , 2009, 58(8): 5709-5715. doi: 10.7498/aps.58.5709
    [15] 牛秀明, 齐元华. 分子结点电子输运性质的理论研究.  , 2008, 57(11): 6926-6931. doi: 10.7498/aps.57.6926
    [16] 唐黎明, 王玲玲, 王 宁, 严 敏. 磁场下非对称T型量子波导的电子输运行为.  , 2008, 57(5): 3203-3211. doi: 10.7498/aps.57.3203
    [17] 戴振宏, 倪 军. 基于格林函数的多终端量子链状体系电子输运性质的研究.  , 2005, 54(7): 3342-3345. doi: 10.7498/aps.54.3342
    [18] 郭汝海, 时红艳, 孙秀冬. 用格林函数法计算量子点中的应变分布.  , 2004, 53(10): 3487-3492. doi: 10.7498/aps.53.3487
    [19] 曹天德. 带间作用与超导转变温度.  , 2002, 51(5): 1118-1121. doi: 10.7498/aps.51.1118
    [20] 赵 辉, 何大伟, 王永生, 徐叙瑢. ZnS型薄膜电致发光器件输运过程的解析能带模拟.  , 2000, 49(9): 1867-1872. doi: 10.7498/aps.49.1867
计量
  • 文章访问数:  7682
  • PDF下载量:  926
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-02-17
  • 修回日期:  2011-05-20
  • 刊出日期:  2011-06-05

/

返回文章
返回
Baidu
map