Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electron transport of one-dimensional non-conjugated (CH2)n molecule chain coupling to graphene electrode

He Yan-Bin Bai Xi

Citation:

Electron transport of one-dimensional non-conjugated (CH2)n molecule chain coupling to graphene electrode

He Yan-Bin, Bai Xi
PDF
HTML
Get Citation
  • Although the one-dimensional non-conjugated alkane chain, which has an important influence on the electron transport process, does not possess the characteristics of electron-rich and electron-deficient, it often exists in single-molecule devices and biological molecules such as peptides and proteins. In order to understand the electron transport characteristics of alkane chain, a one-dimensional linear non-conjugate (CH2)n molecular junction model is designed in this study. Subsequently, we conduct the systematic study of the electronic transport behavior of (CH2)n (n = 1–12) molecular linear chain coupling to two graphene electrodes, based on the density functional theory and nonequilibrium Green’s function formalism. The results reveal that the structure and conductance of CH2 chain are highly sensitive to the odevity of CH2 unit. When the value of n is odd, the groups of CH2 extend in a zigzag way from the left electrode to the right electrode in the plane of graphene, while the value of n is even, what is different is that the groups of CH2 are arranged above and below the electrode plane. For this reason, the odd-even behavior of conductance occurs in the (CH2)n (n = 1–12) molecular chain. Furthermore, n is also an important factor to affect their transport properties (odd or even behavior of conductance). The longer the (CH2)n chain, the deeper the suppression in transmission spectrum and the lower the equilibrium conductance. What is more, the conductance decreases exponentially with the increase of molecular length, with a decay constant β of 0.67 and 0.60 for odd and even, respectively, which is in good agreement with the experimental research. Additionally, by analyzing their eigenchannels of odd and even (CH2)n molecular chain, we find that the coplanar σ electron with graphene electrode makes a major contribution to the electronic transport channel. The current-voltage curve of (CH2)n molecular chain exhibits nonlinearity, implying their semiconductor characteristics. The interesting mechanical and electronic transport properties are expected to conduce to further experimental synthesis, design and operation of the single molecular nanodevices.
      Corresponding author: He Yan-Bin, heyb@czmc.edu.cn
    • Funds: Project supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China, STIP (Grant No. 2020L0371), the Scientific and Technological Innovation Team Programs of Changzhi Medical College, China (Grant No. CX201904), the Fund for Shanxi “1331Project” Key Innovative Research Team, China, “1331KIRT”, and the Shanxi Province Service Industry Innovation Discipline Group Construction Plan, China (201809)
    [1]

    Xin N, Guan J, Zhou C, Chen X, Gu C, Li Y, Ratner M A, Nitzan A, Stoddart J F, Guo X 2019 Nat. Rev. Phy. 1 211Google Scholar

    [2]

    Wen B, Cao M, Lu M, Cao W, Shi H, Liu J, Wang X, Jin H, Fang X, Wang W, Yuan J 2014 Adv. Mater. 26 3484Google Scholar

    [3]

    Cao M-S, Wang X X, Zhang M, Cao W Q, Fang X Y, Yuan J 2020 Adv. Mater. 32 1907156Google Scholar

    [4]

    Balci O, Polat E O, Kakenov N, Kocabas C 2015 Nat. Commun. 6 6628Google Scholar

    [5]

    Meng L, Xin N, Hu C, Wang J, Gui B, Shi J, Wang C, Shen C, Zhang G, Guo H, Meng S, Guo X 2019 Nat. Commun. 10 1450Google Scholar

    [6]

    Li Y, Zhao L, Yao Y, Guo X 2019 ACS Appl Bio Mater 3 68Google Scholar

    [7]

    Zhou C, Li X, Gong Z, Jia C, Lin Y, Gu C, He G, Zhong Y, Yang J, Guo X 2018 Nat. Commun. 9 807Google Scholar

    [8]

    Li Y, Yang C, Guo X 2020 Acc. Chem. Res. 53 159Google Scholar

    [9]

    Jia C, Migliore A, Xin N, Huang S, Wang J, Yang Q, Wang S, Chen H, Wang D, Feng B, Liu Z, Zhang G, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X 2016 Science 352 1443Google Scholar

    [10]

    Zotti L A, Cuevas J C 2018 ACS Omega 3 3778Google Scholar

    [11]

    Guo C, Yu X, Refaely-Abramson S, Sepunaru L, Bendikov T, Pecht I, Kronik L, Vilan A, Sheves M, Cahen D 2016 Proc. Natl. Acad. Sci. U. S. A. 113 10785Google Scholar

    [12]

    Schosser W M, Zotti L A, Cuevas J C, Pauly F 2019 J. Chem. Phys. 150 174705Google Scholar

    [13]

    Mu Y, Zhou Y, Zhang T, Zeng Z-Y, Cheng Y 2017 J. Chem. Eng. Data 62 3889Google Scholar

    [14]

    Liu F T, Cheng Y, Yang F-B, Chen X R 2014 Physica E 56 96Google Scholar

    [15]

    贺园园, 程娜, 赵健伟 2017 化学学报 75 893Google Scholar

    He Y Y, Cheng N, Zhao J W 2017 Acta Chim. Sin. 75 893Google Scholar

    [16]

    左敏, 廖文虎, 吴丹, 林丽娥 2019 68 237302Google Scholar

    Zuo M, Liao W H, Wu D, Lin L E 2019 Acta Phys. Sin. 68 237302Google Scholar

    [17]

    刘南舒, 周思, 赵纪军 2019 物理化学学报 35 1142Google Scholar

    Liu N S, Zhou S, Zhao J J 2019 Acta Phys.Chem. Sin. 35 1142Google Scholar

    [18]

    Fang X Y, Yu X X, Zheng H M, Jin H B, Wang L, Cao M-S 2015 Phys. Lett. A 379 2245Google Scholar

    [19]

    Malen J A, Doak P, Baheti K, Tilley T D, Segalman R A, Majumdar A 2009 Nano Lett. 9 1164Google Scholar

    [20]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745Google Scholar

    [21]

    Artacho E, Anglada E, Diéguez O, Gale J D, García A, Junquera J, Martin R M, Ordejón P, Pruneda J M, Sánchez-Portal D, Soler J M 2008 J. Phys.: Condens. Matter 20 064208Google Scholar

    [22]

    García A, Papior N, Akhtar A, Artacho E, Blum V, Bosoni E, Brandimarte P, Brandbyge M, Cerdá J I, Corsetti F, Cuadrado R, Dikan V, Ferrer J, Gale J, García-Fernández P, García-Suárez V M, García S, Huhs G, Illera S, Korytár R, Koval P, Lebedeva I, Lin L, López-Tarifa P, Mayo S G, Mohr S, Ordejón P, Postnikov A, Pouillon Y, Pruneda M, Robles R, Sánchez-Portal D, Soler J M, Ullah R, Yu V W-z, Junquera J 2020 J. Chem. Phys. 152 204108Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993Google Scholar

    [25]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [26]

    Frederiksen T, Paulsson M, Brandbyge M, Jauho A P 2007 Phys. Rev. B 75 205413Google Scholar

    [27]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272Google Scholar

    [28]

    Lang N D, Avouris P 1998 Phys. Rev. Lett. 81 3515Google Scholar

    [29]

    Li Y J, Li S L, Gong P, Li Y L, Fang X Y, Jia Y H, Cao M-S 2018 Physica E 104 247Google Scholar

    [30]

    陈熙, 张胜利 2018 物理化学学报 34 1061Google Scholar

    Chen X, Zhang S L 2018 Acta Phys.Chem. Sin. 34 1061Google Scholar

    [31]

    柳福提, 张淑华, 程艳, 陈向荣, 程晓洪 2016 65 106201Google Scholar

    Liu F T, Zhang S H, Cheng Y, Chen X R, Cheng X H 2016 Acta Phys. Sin. 65 106201Google Scholar

  • 图 1  (CH2)n分子结(n = 1−12)计算模型示意图(金色球: 碳原子C, 红色球: 氧原子O, 灰色球: 氮原子N, 淡粉色球: 氢原子H)

    Figure 1.  Schematic illustration of (CH2)n (n = 1−12) molecule junction (golden ball: carbon atom, red ball, oxygen atom, grey ball: nitrogen atom, light pink ball: hydrogen atom).

    图 2  (CH2)n分子结(n = 1−12)稳定结构图(每个图中下方为沿y轴方向的俯视图, 上方和右方插图分别为沿xz轴方向的侧视图, 坐标方向和小球颜色说明见图1)

    Figure 2.  The stable structure of (CH2)n (n = 1−12) molecule junction (on each diagram, the bottom figure is a top view along y axis, the upper and right side inset is a side view along x and z axis, respectively. Coordinate direction and color description of the ball are shown in Fig. 1).

    图 3  奇数 (a)和偶数(b) (CH2)n分子结在零偏压下的透射谱图

    Figure 3.  Transmission coefficient as a function of energy for odd (a) and even (b) (CH2)n molecule junction under zero external bias.

    图 4  奇数 (a)和偶数(b) (CH2)n分子结零偏压电导与分子链长度关系图

    Figure 4.  The plot of conductance versus chain length for odd (a) and even (b) molecular junction of (CH2)n at the bias of 0 V.

    图 5  奇数 (a)和偶数(b) (CH2)n分子结导电通道图(上方插图为沿x轴的侧视图, 蓝色和黄色区域分别代表得失电荷密度)

    Figure 5.  The eigenchannels of odd (a) and even (b) molecular junction of (CH2)n (The upper inset is a side view along x axis, blue and yellow areas denote the gain and loss of electron density)

    图 6  奇数 (a)和偶数(b) (CH2)n分子结在不同电压下的电流图

    Figure 6.  The current of odd (a) and even (b) (CH2)n molecular junction under different external bias.

    表 1  (CH2)n分子结(n = 1—12)的平均键长、键角和结合能(d1, d2, d3, α图2所示)

    Table 1.  The average bond length, bond angle and binding energy in (CH2)n (n = 1–12) molecule junction (the bond length of d1, d2, d3 and the bond angle α are shown in Fig. 2).

    nd1N—Nd2C—Cd3C—Cα/(°)ΔE/eV
    12.44–10.90
    23.671.55–11.04
    35.101.552.542.25–11.12
    46.221.532.5518.81–11.45
    57.711.552.630.91–11.52
    68.911.542.5915.12–11.55
    710.301.552.620.41–11.66
    811.511.542.6014.61–11.57
    912.901.552.620.80–11.69
    1014.111.542.6114.93–11.60
    1115.511.552.621.85–11.72
    1216.711.542.6114.19–11.60
    DownLoad: CSV
    Baidu
  • [1]

    Xin N, Guan J, Zhou C, Chen X, Gu C, Li Y, Ratner M A, Nitzan A, Stoddart J F, Guo X 2019 Nat. Rev. Phy. 1 211Google Scholar

    [2]

    Wen B, Cao M, Lu M, Cao W, Shi H, Liu J, Wang X, Jin H, Fang X, Wang W, Yuan J 2014 Adv. Mater. 26 3484Google Scholar

    [3]

    Cao M-S, Wang X X, Zhang M, Cao W Q, Fang X Y, Yuan J 2020 Adv. Mater. 32 1907156Google Scholar

    [4]

    Balci O, Polat E O, Kakenov N, Kocabas C 2015 Nat. Commun. 6 6628Google Scholar

    [5]

    Meng L, Xin N, Hu C, Wang J, Gui B, Shi J, Wang C, Shen C, Zhang G, Guo H, Meng S, Guo X 2019 Nat. Commun. 10 1450Google Scholar

    [6]

    Li Y, Zhao L, Yao Y, Guo X 2019 ACS Appl Bio Mater 3 68Google Scholar

    [7]

    Zhou C, Li X, Gong Z, Jia C, Lin Y, Gu C, He G, Zhong Y, Yang J, Guo X 2018 Nat. Commun. 9 807Google Scholar

    [8]

    Li Y, Yang C, Guo X 2020 Acc. Chem. Res. 53 159Google Scholar

    [9]

    Jia C, Migliore A, Xin N, Huang S, Wang J, Yang Q, Wang S, Chen H, Wang D, Feng B, Liu Z, Zhang G, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X 2016 Science 352 1443Google Scholar

    [10]

    Zotti L A, Cuevas J C 2018 ACS Omega 3 3778Google Scholar

    [11]

    Guo C, Yu X, Refaely-Abramson S, Sepunaru L, Bendikov T, Pecht I, Kronik L, Vilan A, Sheves M, Cahen D 2016 Proc. Natl. Acad. Sci. U. S. A. 113 10785Google Scholar

    [12]

    Schosser W M, Zotti L A, Cuevas J C, Pauly F 2019 J. Chem. Phys. 150 174705Google Scholar

    [13]

    Mu Y, Zhou Y, Zhang T, Zeng Z-Y, Cheng Y 2017 J. Chem. Eng. Data 62 3889Google Scholar

    [14]

    Liu F T, Cheng Y, Yang F-B, Chen X R 2014 Physica E 56 96Google Scholar

    [15]

    贺园园, 程娜, 赵健伟 2017 化学学报 75 893Google Scholar

    He Y Y, Cheng N, Zhao J W 2017 Acta Chim. Sin. 75 893Google Scholar

    [16]

    左敏, 廖文虎, 吴丹, 林丽娥 2019 68 237302Google Scholar

    Zuo M, Liao W H, Wu D, Lin L E 2019 Acta Phys. Sin. 68 237302Google Scholar

    [17]

    刘南舒, 周思, 赵纪军 2019 物理化学学报 35 1142Google Scholar

    Liu N S, Zhou S, Zhao J J 2019 Acta Phys.Chem. Sin. 35 1142Google Scholar

    [18]

    Fang X Y, Yu X X, Zheng H M, Jin H B, Wang L, Cao M-S 2015 Phys. Lett. A 379 2245Google Scholar

    [19]

    Malen J A, Doak P, Baheti K, Tilley T D, Segalman R A, Majumdar A 2009 Nano Lett. 9 1164Google Scholar

    [20]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745Google Scholar

    [21]

    Artacho E, Anglada E, Diéguez O, Gale J D, García A, Junquera J, Martin R M, Ordejón P, Pruneda J M, Sánchez-Portal D, Soler J M 2008 J. Phys.: Condens. Matter 20 064208Google Scholar

    [22]

    García A, Papior N, Akhtar A, Artacho E, Blum V, Bosoni E, Brandimarte P, Brandbyge M, Cerdá J I, Corsetti F, Cuadrado R, Dikan V, Ferrer J, Gale J, García-Fernández P, García-Suárez V M, García S, Huhs G, Illera S, Korytár R, Koval P, Lebedeva I, Lin L, López-Tarifa P, Mayo S G, Mohr S, Ordejón P, Postnikov A, Pouillon Y, Pruneda M, Robles R, Sánchez-Portal D, Soler J M, Ullah R, Yu V W-z, Junquera J 2020 J. Chem. Phys. 152 204108Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993Google Scholar

    [25]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [26]

    Frederiksen T, Paulsson M, Brandbyge M, Jauho A P 2007 Phys. Rev. B 75 205413Google Scholar

    [27]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272Google Scholar

    [28]

    Lang N D, Avouris P 1998 Phys. Rev. Lett. 81 3515Google Scholar

    [29]

    Li Y J, Li S L, Gong P, Li Y L, Fang X Y, Jia Y H, Cao M-S 2018 Physica E 104 247Google Scholar

    [30]

    陈熙, 张胜利 2018 物理化学学报 34 1061Google Scholar

    Chen X, Zhang S L 2018 Acta Phys.Chem. Sin. 34 1061Google Scholar

    [31]

    柳福提, 张淑华, 程艳, 陈向荣, 程晓洪 2016 65 106201Google Scholar

    Liu F T, Zhang S H, Cheng Y, Chen X R, Cheng X H 2016 Acta Phys. Sin. 65 106201Google Scholar

  • [1] Huang Sheng-Xing, Chen Jian, Wang Wen-Fei, Wang Xu-Dong, Yao Man. First principle calculation of thermoelectric transport performances of new dual transition metal MXene. Acta Physica Sinica, 2024, 73(14): 146301. doi: 10.7498/aps.73.20240432
    [2] Liang Jin-Tao, Yan Xiao-Hong, Zhang Ying, Xiao Yang. Non-collinear magnetism and electronic transport of boron or nitrogen doped zigzag graphene nanoribbon. Acta Physica Sinica, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [3] Wu Yu, Cai Shao-Hong, Deng Ming-Sen, Sun Guang-Yu, Liu Wen-Jiang. First-principle study on quantum thermal transport in a polythiophene chain. Acta Physica Sinica, 2018, 67(2): 026501. doi: 10.7498/aps.67.20171198
    [4] Liu Fu-Ti, Zhang Shu-Hua, Cheng Yan, Chen Xiang-Rong, Cheng Xiao-Hong. Theoretical calculation of electron transport properties of atomic chains of (GaAs)n (n=1-4). Acta Physica Sinica, 2016, 65(10): 106201. doi: 10.7498/aps.65.106201
    [5] Chen Xiao-Bin, Duan Wen-Hui. Quantum thermal transport and spin thermoelectrics in low-dimensional nano systems: application of nonequilibrium Green's function method. Acta Physica Sinica, 2015, 64(18): 186302. doi: 10.7498/aps.64.186302
    [6] Liu Fu-Ti, Cheng Yan, Chen Xiang-Rong, Cheng Xiao-Hong. Calculation of electron transport in GaAs nanoscale junctions using first-principles. Acta Physica Sinica, 2014, 63(13): 137303. doi: 10.7498/aps.63.137303
    [7] Liu Fu-Ti, Cheng Yan, Chen Xiang-Rong, Cheng Xiao-Hong, Zeng Zhi-Qiang. Theoretical calculation of electron transport properties of the Au-Si60-Au molecular junctions. Acta Physica Sinica, 2014, 63(17): 177304. doi: 10.7498/aps.63.177304
    [8] Liu Fu-Ti, Cheng Yan, Yang Fu-Bin, Cheng Xiao-Hong, Chen Xiang-Rong. First-principles calculations of the electron transport through Si4 cluster. Acta Physica Sinica, 2013, 62(14): 140504. doi: 10.7498/aps.62.140504
    [9] Liu Fu-Ti, Cheng Yan, Yang Fu-Bin, Cheng Xiao-Hong, Chen Xiang-Rong. First-principles calculations of the electronic transport in Au-Si-Au junctions. Acta Physica Sinica, 2013, 62(10): 107401. doi: 10.7498/aps.62.107401
    [10] Guan Dong-Bo, Mao Jian. First principles study of the electronic structure and optical properties of Magnli phase titanium suboxides Ti8O15. Acta Physica Sinica, 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [11] Fan Zhi-Qiang, Xie Fang. Effect of B and N doping on the negative differential resistance in molecular device. Acta Physica Sinica, 2012, 61(7): 077303. doi: 10.7498/aps.61.077303
    [12] Duan Ling, Hu Fei, Ding Jian-Wen. Effects of gradient disorder on electronic transport in quasi-one-dimensional nanowires. Acta Physica Sinica, 2011, 60(11): 117201. doi: 10.7498/aps.60.117201
    [13] An Yi-Peng, Yang Chuan-Lu, Wang Mei-Shan, Ma Xiao-Guang, Wang De-Hua. First-principles study of electronic transport properties of C20F20 molecule. Acta Physica Sinica, 2010, 59(3): 2010-2015. doi: 10.7498/aps.59.2010
    [14] Song Jiu-Xu, Yang Yin-Tang, Liu Hong-Xia, Zhang Zhi-Yong. First-principles study of the electonic structure of nitrogen-doped silicon carbide nanotubes. Acta Physica Sinica, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [15] Zhang Ji-Hua, Ding Jian-Wen, Lu Zhang-Hui. First-principles study of electrical structures and optical properties of Co:MgF2 crystal. Acta Physica Sinica, 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [16] Zheng Xiao-Hong, Dai Zhen-Xiang, Wang Xian-Long, Zeng Zhi. Effects of B and N doping on spin polarized transport in graphene nanoribbons. Acta Physica Sinica, 2009, 58(13): 259-S265. doi: 10.7498/aps.58.259
    [17] Zheng Xin-Liang, Zheng Ji-Ming, Ren Zhao-Yu, Guo Ping, Tian Jin-Shou, Bai Jin-Tao. First-principles investigations on the electron transport of a TaSi3 cluster. Acta Physica Sinica, 2009, 58(8): 5709-5715. doi: 10.7498/aps.58.5709
    [18] Ni Jian-Gang, Liu Nuo, Yang Guo-Lai, Zhang Xi. First-principle study on electronic structure of BaTiO3 (001) surfaces. Acta Physica Sinica, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [19] Zhang Jin-Kui, Deng Sheng-Hua, Jin Hui, Liu Yue-Lin. First-principle study on the electronic structure and p-type conductivity of ZnO. Acta Physica Sinica, 2007, 56(9): 5371-5375. doi: 10.7498/aps.56.5371
    [20] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. First-principles study of electronic structure for CoSi. Acta Physica Sinica, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
Metrics
  • Abstract views:  5426
  • PDF Downloads:  83
  • Cited By: 0
Publishing process
  • Received Date:  21 June 2020
  • Accepted Date:  28 September 2020
  • Available Online:  01 February 2021
  • Published Online:  20 February 2021

/

返回文章
返回
Baidu
map