Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Calculation of electron transport in GaAs nanoscale junctions using first-principles

Liu Fu-Ti Cheng Yan Chen Xiang-Rong Cheng Xiao-Hong

Citation:

Calculation of electron transport in GaAs nanoscale junctions using first-principles

Liu Fu-Ti, Cheng Yan, Chen Xiang-Rong, Cheng Xiao-Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Electron transport properties of GaAs cluster, which is sandwiched between two semi-infinite Au(100)-3×3 electrodes in four different anchoring configurations (top-top, top-hollow, hollow-top, hollow-hollow), is investigated using the combination of density functional theory and non-equilibrium Green's function method. We optimize the geometry of junctions at different distances, simulate the breaking process of Au-GaAs-Au junctions, calculate the cohesion energy and conductance of the junctions as functions of distance dz, and obtain the most stable structure when the distances are set at 1.389 nm, 1.145 nm, 1.145 nm, 0.861 nm, respectively. For stable structures, the Ga-As bond lengths of the junctions is 0.222 nm, 0.235 nm, 0.227 nm, 0.235 nm, respectively. The equilibrium conductances are 2.33 G0, 1.20 G0, 1.90 G0, 1.69 G0,respectively. All junctions have large conductance. In the range of voltage from -1.2–1.2 V, the I-V curve of the junctions shows linear characteristics.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174214, 11204192), the Research Project of Education Department of Sichuan Province, China (Grant No. 13ZB0207), and the Scientific Research Project of Yibin University, China (Grant No. 2013YY05).
    [1]

    Xu B, Tao N J 2003 Science 301 1221

    [2]

    Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550

    [3]

    Gittins D I, Bethell D, Schiffrin D J, Nichols R J 2000 Nature 408 67

    [4]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 121104

    [5]

    Roschier L, Penttila J, Martin M, Hakonen P, Paalanen M, Tapper U, Kauppinen E I, Journet C, Bernier P 1999 Appl. Phy. Lett. 75 728

    [6]

    Chen X C, Xu Y, Zeng Z Y 2008 Physica B 403 3185

    [7]

    Chen X C, Yang J, Zhou Y H, Xu Y 2009 Acta Phys. Sin. 58 3064 (in Chinese)[陈小春, 杨君, 周艳红, 许英 2009 58 3064]

    [8]

    Wu Q H, Zhao P, Liu D S 2014 Acta Phys. Chim. Sin. 30 53

    [9]

    Yao L H, Cao M S, Yang H J, Liu X J, Fang X Y, Yuan J 2014 Computational Materials Science 85 179

    [10]

    Zou B, Li Z L, Song X N, Wang C K 2008 Chin. Phys. Lett. 25 254

    [11]

    Li Y X 2006 Chin. Phys. Lett. 23 2560

    [12]

    Gu C Z, Wang Q, Li J J, Xia K 2013 Chin. Phys. B 22 098107

    [13]

    Heath J R, Ratner M A 2003 Physics Today 56 43

    [14]

    Huang B, Zhang J X, Li R, Shen Z Y, Hou S M, Zhao X Y, Xue Z Q, Wu Q D 2006 Acta Phys.-Chim. Sin. 22 161 (in Chinese)[黄飙, 张家兴, 李锐, 申自勇, 侯士敏, 赵兴钰, 薛增泉, 吴全德 2006 物理化学学报 22 161]

    [15]

    Ventra M D, Pantelides S T, Lang N D 2000 Phys. Rev. Lett. 84 979

    [16]

    Smit R H M, Noat Y, Untiedt C, Lang N D, van Hemert M C, van Ruitenbeek J M 2002 Nature 419 906

    [17]

    Stange M, Thygesen K S, Jacobsen K W 2006 Phys. Rev. B 73 125424

    [18]

    Yu J X, Chen X R, Sanvito S 2012 Appl. Phys. Lett. 100 013113

    [19]

    An Y P, Yang C L, Wang M S, Ma X G, Wang D H 2010 Acta Phys. Sin. 59 2010 (in Chinese)[安义鹏, 杨传路, 王美山, 马晓光, 王德华 2010 59 2010]

    [20]

    Cheng X, Yang C L, Tong X F, Wang M S, Ma X G 2011 Acta Phys. Sin. 60 017302 (in Chinese)[程霞, 杨传路, 童小菲, 王美山, 马晓光 2011 60 017302]

    [21]

    Senger R T, Tongay S, Durgun E, Ciraci S 2005 Phys. Rev. B 72 075419

    [22]

    Zhang D L, Xu Y L, Zhang J B, Miao X S 2012 Phys. Lett. A 376 3272

    [23]

    Liu F T, Cheng Y, Yang F B, Cheng X H, Chen X R 2013 Acta Phys. Sin. 62 107401

    [24]

    Liu F T, Cheng Y, Yang F B, Cheng X H, Chen X R 2013 Acta Phys. Sin. 62 140504

    [25]

    Liu F T, Cheng Y, Cheng X H, Yang F B, Chen X R 2013 Chin. Phys. Lett. 30 067302

    [26]

    Kohn W, Sham L 1965 Phys. Rev. B 140 A1133

    [27]

    Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)

    [28]

    Reed M. A, Zhou C, Miller C J, Burgin T P, Tour J M 1997 Science 278 252

    [29]

    Fisher D S, Lee P A 1981 Phys. Rev. B 23 6851

    [30]

    Perdew J P 1986 Phys. Rev. B 33 8822

    [31]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993

    [32]

    Rocha A R, Garcia-Suarez V M, Bailey S, Lanbert C, Ferrer J, Sanvito S 2006 Phys. Rev. B 73 085414

  • [1]

    Xu B, Tao N J 2003 Science 301 1221

    [2]

    Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550

    [3]

    Gittins D I, Bethell D, Schiffrin D J, Nichols R J 2000 Nature 408 67

    [4]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 121104

    [5]

    Roschier L, Penttila J, Martin M, Hakonen P, Paalanen M, Tapper U, Kauppinen E I, Journet C, Bernier P 1999 Appl. Phy. Lett. 75 728

    [6]

    Chen X C, Xu Y, Zeng Z Y 2008 Physica B 403 3185

    [7]

    Chen X C, Yang J, Zhou Y H, Xu Y 2009 Acta Phys. Sin. 58 3064 (in Chinese)[陈小春, 杨君, 周艳红, 许英 2009 58 3064]

    [8]

    Wu Q H, Zhao P, Liu D S 2014 Acta Phys. Chim. Sin. 30 53

    [9]

    Yao L H, Cao M S, Yang H J, Liu X J, Fang X Y, Yuan J 2014 Computational Materials Science 85 179

    [10]

    Zou B, Li Z L, Song X N, Wang C K 2008 Chin. Phys. Lett. 25 254

    [11]

    Li Y X 2006 Chin. Phys. Lett. 23 2560

    [12]

    Gu C Z, Wang Q, Li J J, Xia K 2013 Chin. Phys. B 22 098107

    [13]

    Heath J R, Ratner M A 2003 Physics Today 56 43

    [14]

    Huang B, Zhang J X, Li R, Shen Z Y, Hou S M, Zhao X Y, Xue Z Q, Wu Q D 2006 Acta Phys.-Chim. Sin. 22 161 (in Chinese)[黄飙, 张家兴, 李锐, 申自勇, 侯士敏, 赵兴钰, 薛增泉, 吴全德 2006 物理化学学报 22 161]

    [15]

    Ventra M D, Pantelides S T, Lang N D 2000 Phys. Rev. Lett. 84 979

    [16]

    Smit R H M, Noat Y, Untiedt C, Lang N D, van Hemert M C, van Ruitenbeek J M 2002 Nature 419 906

    [17]

    Stange M, Thygesen K S, Jacobsen K W 2006 Phys. Rev. B 73 125424

    [18]

    Yu J X, Chen X R, Sanvito S 2012 Appl. Phys. Lett. 100 013113

    [19]

    An Y P, Yang C L, Wang M S, Ma X G, Wang D H 2010 Acta Phys. Sin. 59 2010 (in Chinese)[安义鹏, 杨传路, 王美山, 马晓光, 王德华 2010 59 2010]

    [20]

    Cheng X, Yang C L, Tong X F, Wang M S, Ma X G 2011 Acta Phys. Sin. 60 017302 (in Chinese)[程霞, 杨传路, 童小菲, 王美山, 马晓光 2011 60 017302]

    [21]

    Senger R T, Tongay S, Durgun E, Ciraci S 2005 Phys. Rev. B 72 075419

    [22]

    Zhang D L, Xu Y L, Zhang J B, Miao X S 2012 Phys. Lett. A 376 3272

    [23]

    Liu F T, Cheng Y, Yang F B, Cheng X H, Chen X R 2013 Acta Phys. Sin. 62 107401

    [24]

    Liu F T, Cheng Y, Yang F B, Cheng X H, Chen X R 2013 Acta Phys. Sin. 62 140504

    [25]

    Liu F T, Cheng Y, Cheng X H, Yang F B, Chen X R 2013 Chin. Phys. Lett. 30 067302

    [26]

    Kohn W, Sham L 1965 Phys. Rev. B 140 A1133

    [27]

    Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)

    [28]

    Reed M. A, Zhou C, Miller C J, Burgin T P, Tour J M 1997 Science 278 252

    [29]

    Fisher D S, Lee P A 1981 Phys. Rev. B 23 6851

    [30]

    Perdew J P 1986 Phys. Rev. B 33 8822

    [31]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993

    [32]

    Rocha A R, Garcia-Suarez V M, Bailey S, Lanbert C, Ferrer J, Sanvito S 2006 Phys. Rev. B 73 085414

  • [1] Zhou Zhan-Hui, Li Qun, He Xiao-Min. Electron transport mechanism in AlN/β-Ga2O3 heterostructures. Acta Physica Sinica, 2023, 72(2): 028501. doi: 10.7498/aps.72.20221545
    [2] He Yan-Bin, Bai Xi. Electron transport of one-dimensional non-conjugated (CH2)n molecule chain coupling to graphene electrode. Acta Physica Sinica, 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [3] Liang Jin-Tao, Yan Xiao-Hong, Zhang Ying, Xiao Yang. Non-collinear magnetism and electronic transport of boron or nitrogen doped zigzag graphene nanoribbon. Acta Physica Sinica, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [4] Liu Fu-Ti, Zhang Shu-Hua, Cheng Yan, Chen Xiang-Rong, Cheng Xiao-Hong. Theoretical calculation of electron transport properties of atomic chains of (GaAs)n (n=1-4). Acta Physica Sinica, 2016, 65(10): 106201. doi: 10.7498/aps.65.106201
    [5] Liu Fu-Ti, Cheng Yan, Chen Xiang-Rong, Cheng Xiao-Hong, Zeng Zhi-Qiang. Theoretical calculation of electron transport properties of the Au-Si60-Au molecular junctions. Acta Physica Sinica, 2014, 63(17): 177304. doi: 10.7498/aps.63.177304
    [6] Li Biao, Xu Da-Hai, Zeng Hui. Influence of edge reconstruction on the electron transport in zigzag graphene nanoribbon. Acta Physica Sinica, 2014, 63(11): 117102. doi: 10.7498/aps.63.117102
    [7] Liu Fu-Ti, Cheng Yan, Yang Fu-Bin, Cheng Xiao-Hong, Chen Xiang-Rong. First-principles calculations of the electron transport through Si4 cluster. Acta Physica Sinica, 2013, 62(14): 140504. doi: 10.7498/aps.62.140504
    [8] Deng Xiao-Qing, Yang Chang-Hu, Zhang Hua-Lin. The electronic transport properties affected by B/N doping in graphene-based molecular devices. Acta Physica Sinica, 2013, 62(18): 186102. doi: 10.7498/aps.62.186102
    [9] Liu Fu-Ti, Cheng Yan, Yang Fu-Bin, Cheng Xiao-Hong, Chen Xiang-Rong. First-principles calculations of the electronic transport in Au-Si-Au junctions. Acta Physica Sinica, 2013, 62(10): 107401. doi: 10.7498/aps.62.107401
    [10] Hu Fei, Duan Ling, Ding Jian-Wen. Electronic transport in hybrid contact of doubly-stacked zigzag graphene nanoribbons. Acta Physica Sinica, 2012, 61(7): 077201. doi: 10.7498/aps.61.077201
    [11] Duan Ling, Hu Fei, Ding Jian-Wen. Effects of gradient disorder on electronic transport in quasi-one-dimensional nanowires. Acta Physica Sinica, 2011, 60(11): 117201. doi: 10.7498/aps.60.117201
    [12] Xu Shuang-Ying, Hu Lin-Hua, Li Wen-Xin, Dai Song-Yuan. Effect of interface contacts between TiO2 particles on electron transport in dye-sensitized solar cells. Acta Physica Sinica, 2011, 60(11): 116802. doi: 10.7498/aps.60.116802
    [13] Zheng Ji-Ming, Zhao Pei, Chen You-Wei, Ren Zhao-Yu, Guo Ping. Theoretical investigation on electron transport properties of singlewall carbon nanotube with oxygen molecular absorption. Acta Physica Sinica, 2011, 60(6): 068501. doi: 10.7498/aps.60.068501
    [14] Zhang Mi, Chen Yuan-Ping, Zhang Zai-Lan, Ouyang Tao, Zhong Jian-Xin. The effect of stacked graphene flakes on the electronic transport of zigzag-edged graphene nanoribbons. Acta Physica Sinica, 2011, 60(12): 127204. doi: 10.7498/aps.60.127204
    [15] Kou Dong-Xing, Liu Wei-Qing, Hu Lin-Hua, Huang Yang, Dai Song-Yuan, Jiang Nian-Quan. The investigation on the mechanism of enhanced performance of dye-sensitized solar cells after anode modified. Acta Physica Sinica, 2010, 59(8): 5857-5862. doi: 10.7498/aps.59.5857
    [16] Wang Li-Guang, Zhang Hong-Yu, Wang Chang, Terence K. S. W.. Electronic conductance of zigzag single wall carbon nanotube with an implanted Li atom. Acta Physica Sinica, 2010, 59(1): 536-540. doi: 10.7498/aps.59.536
    [17] Zheng Xin-Liang, Zheng Ji-Ming, Ren Zhao-Yu, Guo Ping, Tian Jin-Shou, Bai Jin-Tao. First-principles investigations on the electron transport of a TaSi3 cluster. Acta Physica Sinica, 2009, 58(8): 5709-5715. doi: 10.7498/aps.58.5709
    [18] Niu Xiu-Ming, Qi Yuan-Hua. Theoretical study of the electron transport in the molecular contact. Acta Physica Sinica, 2008, 57(11): 6926-6931. doi: 10.7498/aps.57.6926
    [19] Guo Li-Jun, Wüstenberg Jan-Peter, Oleksiy Andreyev, Bauer Michael, Aeschlimann Martin. Spin dynamics of GaAs(100) by two-photon photoemission. Acta Physica Sinica, 2005, 54(7): 3200-3205. doi: 10.7498/aps.54.3200
    [20] ZHENG JIAN, LIU WAN-DONG, YU CHANG-XUAN. EFFECT OF ION-SOUND WAVES ON ELECTRON TRANSPORT. Acta Physica Sinica, 2001, 50(4): 721-725. doi: 10.7498/aps.50.721
Metrics
  • Abstract views:  6098
  • PDF Downloads:  442
  • Cited By: 0
Publishing process
  • Received Date:  14 January 2014
  • Accepted Date:  18 March 2014
  • Published Online:  05 July 2014

/

返回文章
返回
Baidu
map