-
Defects produced by ion irradiation can effectively modulate many physical properties of phosphorene. In this paper, the molecular dynamics method is used to simulate the ion irradiation process of phosphorene. The relations between the formation probability of defects and the energy of incident ions, ion species and incident angle of ions are revealed. The non-equilibrium molecular dynamics simulation is used to calculate the thermal conductivity of irradiated phosphorene. The effects of the energy of ions, the irradiation dose, the type of ions and the incident angle of ions on the thermal conductivity of phosphorene are systematically investigated. The influence of the vacancies on the phonon participation rate of phosphorene is studied by lattice dynamics method, and the spatial distribution of localized modes is demonstrated. According to the quantum-mechanical perturbation theory and bond relaxation theory, we point out that the dominant physical mechanism of vacancy defects which significantly reduce the thermal conductivity of phosphorene is the strong scattering of phonons by the low-coordinated atoms near the vacancies. This study provides a theoretical basis for tuning the heat transport properties of phosphorene by defect engineering.
-
Keywords:
- phosphorene /
- ion irradiation /
- vacancy defect /
- thermal conductivity
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva S V, Firsov A A 2004 Science 306 5695
[2] Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. commun. 5 4475
Google Scholar
[3] Xia F, Wang H, Jia Y 2014 Nat. Commun. 5 1
[4] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotech. 9 372
[5] Zeng Y J, Feng Y X, Tang L M, Chen K Q 2021 Appl. Phys. Lett. 118 183103
Google Scholar
[6] Cui C, Ouyang T, Tang C, He C, Li J, Zhang C, Zhong J 2021 Carbon 176 52
Google Scholar
[7] Chen X K, Hu X Y, Jia P, Xie Z X, Liu J 2021 Int. J. Mech. Sci. 206 106576
Google Scholar
[8] Zhou W X, Cheng Y, Chen K Q, Xie G F, Wang T, Zhang G 2020 Adv. Funct. Mater. 30 1903829
Google Scholar
[9] Haskins J, Kınacı A, Sevik C, Sevinçli H, Cuniberti G, Cağın T 2011 Acs. Nano. 5 3779
Google Scholar
[10] Chen J H, Cullen W G, Jang C, Fuhrer M S, Williams E D 2009 Phys. Rev. Lett. 102 236805
Google Scholar
[11] Guo Y, Robertson J 2015 Sci. Rep. 5 14165
Google Scholar
[12] Ziletti A, Carvalho A, Campbell D K, Coker D F, Castro Neto A H 2015 Phys. Rev. Lett. 114 046801
Google Scholar
[13] Yuan S, Rudenko A N, Katsnelson M I 2015 Phy. Rev. B 91 115436
Google Scholar
[14] Qin G, Yan Q B, Qin Z, Yue S Y, Cui H J, Zheng Q R, Su G 2014 Sci. Rep. 4 6946
Google Scholar
[15] Ong Z Y, Cai Y, Zhang G, Zhang Y W 2014 J. Phys. Chem. C 118 43
[16] Xu W, Zhu L, Cai Y, Zhang G, Li B 2015 J. Appl. Phys. 1172 14308
[17] Jiang J W 2015 Nanotechnology 26 315706
Google Scholar
[18] Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Matter (New York: Pergamon Press) pp93–129
[19] Plimpton S 1995 J. Comput. Phys. 117 1
Google Scholar
[20] Zhang H, Zhou T, Xie G F, Cao J X, Yang Z 2014 Appl. Phys. Lett. 104 241908
Google Scholar
[21] Müllerplathe F 1997 J. Chem. Phys. 106 6082
Google Scholar
[22] Bellido E P, Seminario J M 2012 J. Phys. Chem. C 116 4044
Google Scholar
[23] Lehtinen O, Dumur E, Kotakoski J, Krasheninnikov A V, Nordlund K, Keinonen J 2011 Nucl. Instrum. Meth. Phys. Res. B 269 1327
Google Scholar
[24] Schelling P K, PhillpotS R 2001 J. Am. Ceram. Soc. 84 2997
Google Scholar
[25] Wang Y, Qiu B, Ruan X 2012 Appl. Phys. Lett. 101 013101
Google Scholar
[26] Klemens P G 1955 Proc. Phys. Soc. A 68 1113
Google Scholar
[27] Pauling L 1947 J. Am. Chem. Soc. 69 542
Google Scholar
[28] Sun C Q 2007 Prog. Solid State Chem. 35 1
Google Scholar
[29] Liu Y H, Yang X X, Bo M L, Zhang X, Liu X J, Sun C Q, Huang Y L 2016 J. Raman Spectrosc. 47 1304
Google Scholar
[30] Klemens P G 1958 Solid State Phys. 7 1
[31] Huang W J, Sun R, Tao J, Menard L D, Nuzzo R G, Zuo J M 2008 Nat. Mater. 7 308
Google Scholar
[32] Crespi V H, Chopra N G, Cohen M L, Zettl A, Louie S G 1996 Phys. Rev. B 54 5927
Google Scholar
-
图 1 (a) 离子辐照黑磷模拟示意图, 黑色的原子层为黑磷模型, 黄色小球代表辐照的离子; (b) 计算磷烯热导率的MP模拟方法示意图
Figure 1. (a) Schematic diagram of ions irradiation black phosphorus simulation, the black atomic layer is the black phosphorus model, the yellow balls represent the irradiated ions; (b) schematic diagram of MP simulation method for calculating the thermal conductivity of phosphene.
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva S V, Firsov A A 2004 Science 306 5695
[2] Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. commun. 5 4475
Google Scholar
[3] Xia F, Wang H, Jia Y 2014 Nat. Commun. 5 1
[4] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotech. 9 372
[5] Zeng Y J, Feng Y X, Tang L M, Chen K Q 2021 Appl. Phys. Lett. 118 183103
Google Scholar
[6] Cui C, Ouyang T, Tang C, He C, Li J, Zhang C, Zhong J 2021 Carbon 176 52
Google Scholar
[7] Chen X K, Hu X Y, Jia P, Xie Z X, Liu J 2021 Int. J. Mech. Sci. 206 106576
Google Scholar
[8] Zhou W X, Cheng Y, Chen K Q, Xie G F, Wang T, Zhang G 2020 Adv. Funct. Mater. 30 1903829
Google Scholar
[9] Haskins J, Kınacı A, Sevik C, Sevinçli H, Cuniberti G, Cağın T 2011 Acs. Nano. 5 3779
Google Scholar
[10] Chen J H, Cullen W G, Jang C, Fuhrer M S, Williams E D 2009 Phys. Rev. Lett. 102 236805
Google Scholar
[11] Guo Y, Robertson J 2015 Sci. Rep. 5 14165
Google Scholar
[12] Ziletti A, Carvalho A, Campbell D K, Coker D F, Castro Neto A H 2015 Phys. Rev. Lett. 114 046801
Google Scholar
[13] Yuan S, Rudenko A N, Katsnelson M I 2015 Phy. Rev. B 91 115436
Google Scholar
[14] Qin G, Yan Q B, Qin Z, Yue S Y, Cui H J, Zheng Q R, Su G 2014 Sci. Rep. 4 6946
Google Scholar
[15] Ong Z Y, Cai Y, Zhang G, Zhang Y W 2014 J. Phys. Chem. C 118 43
[16] Xu W, Zhu L, Cai Y, Zhang G, Li B 2015 J. Appl. Phys. 1172 14308
[17] Jiang J W 2015 Nanotechnology 26 315706
Google Scholar
[18] Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Matter (New York: Pergamon Press) pp93–129
[19] Plimpton S 1995 J. Comput. Phys. 117 1
Google Scholar
[20] Zhang H, Zhou T, Xie G F, Cao J X, Yang Z 2014 Appl. Phys. Lett. 104 241908
Google Scholar
[21] Müllerplathe F 1997 J. Chem. Phys. 106 6082
Google Scholar
[22] Bellido E P, Seminario J M 2012 J. Phys. Chem. C 116 4044
Google Scholar
[23] Lehtinen O, Dumur E, Kotakoski J, Krasheninnikov A V, Nordlund K, Keinonen J 2011 Nucl. Instrum. Meth. Phys. Res. B 269 1327
Google Scholar
[24] Schelling P K, PhillpotS R 2001 J. Am. Ceram. Soc. 84 2997
Google Scholar
[25] Wang Y, Qiu B, Ruan X 2012 Appl. Phys. Lett. 101 013101
Google Scholar
[26] Klemens P G 1955 Proc. Phys. Soc. A 68 1113
Google Scholar
[27] Pauling L 1947 J. Am. Chem. Soc. 69 542
Google Scholar
[28] Sun C Q 2007 Prog. Solid State Chem. 35 1
Google Scholar
[29] Liu Y H, Yang X X, Bo M L, Zhang X, Liu X J, Sun C Q, Huang Y L 2016 J. Raman Spectrosc. 47 1304
Google Scholar
[30] Klemens P G 1958 Solid State Phys. 7 1
[31] Huang W J, Sun R, Tao J, Menard L D, Nuzzo R G, Zuo J M 2008 Nat. Mater. 7 308
Google Scholar
[32] Crespi V H, Chopra N G, Cohen M L, Zettl A, Louie S G 1996 Phys. Rev. B 54 5927
Google Scholar
Catalog
Metrics
- Abstract views: 4874
- PDF Downloads: 86
- Cited By: 0