Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Based on the molecular dynamics characteristic research of heat conduction of graphyne nanoribbons with vacancy defects

Lan Sheng Li Kun Gao Xin-Yun

Citation:

Based on the molecular dynamics characteristic research of heat conduction of graphyne nanoribbons with vacancy defects

Lan Sheng, Li Kun, Gao Xin-Yun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As a kind of nano-material, graphyne nanoribbon has some physical properties and its properties should be studied for its better usage. In the process of preparing graphyne nanoribbons, it is possible that vacancy defects exist in the lattice structure, which will affect the physical properties of the graphyne nanoribbons. The flotation of graphyne is closer to the actual situation in engineering than the complete graphyne nanoribbons, and the diversity of vacancy defects can lead to various thermal conductivities, so it is very important to simulate the effects of various vacancy defects on thermal conductivity. In order to better predicte and control heat transfer characteristics of graphyne nanoribbons, this paper focuses on the effects of vacancy defects on the heat transfer characteristics of graphyne nanoribbons. According to the different cutting directions of graphyne nanoribbons, two different types of graphyne nanoribbons are obtained, i.e., armchair type and zigzag type. We compare the effects of vacancy defects on the thermal conductivity of two different chiral graphynes nanoribbons to improve the persuasiveness of the conclusion. In this paper, non-equilibrium molecular dynamics method is adopted, by applying periodic boundary conditions in the length direction of the nanoribbons, the interaction between the carbon-carbon atoms is described based on a potential function of adaptive intermolecular reactive empirical bond order (AIREBO). At 300 K, the effects of single vacancy defect in the acetylene chain, single vacancy defect in the benzene ring or double vacancy defects in the acetylene chain on the thermal conductivities of single-layer graphyne nanoribbons are simulated. Fourier's law is used to calculate the thermal conductivities of graphyne nanoribbons. The simulation results show that for the thermal conductivity of graphyne nanoribbons in a-few-dozen nanometer range:1) as a result of the phonon scattering and enhanced phonon Umklapp process, the graphyne nanoribbons with vacancy defects will cause the thermal conductivity to decrease and becomes lower than that of the complete graphyne nanoribbons; 2) due to the difference in phonon density-of-states matching degree, the vacancy defect in the benzene ring of graphyne nanoribbons has a greater effect on the thermal conductivity than that of vacancy defect in the acetylene chain of graphyne nanoribbons, the vacancy defects have a strong influence on the thermal conductivity of in the acetylene chain of graphyne nanoribbons; 3) because of the influence of size effect, the thermal conductivity of graphyne nanoribbon increases with length increasing. In this paper, the research of the thermal conductivity of graphyne nanoribbon provides the reference for controlling their thermal conductivity on a certain scale.
      Corresponding author: Lan Sheng, lansheng@fzu.edu.cn;417955272@qq.com ; Li Kun, lansheng@fzu.edu.cn;417955272@qq.com
    • Funds: Project supported by the Science Foundation of the Fujian Province,China (Grant No.2015J01194) and the National Natural Science Foundation of China (Grant No.61174117).
    [1]

    Novoselov K S, Geim A K, Morozov S V 2004 J. Sci. 306 666

    [2]

    Kim R, Datta S, Lundstrom M S 2009 J. Appl. Phys. 105 034506

    [3]

    Berber S, Kwon Y K, Tomanek D 2000 J. Phys. Rev. Lett. 84 4613

    [4]

    Ghosh S, Calizo I, Teweldebrhan D 2008 J. Appl. Phys. Lett. 92 151911

    [5]

    Hu J, Ruan X, Chen Y P 2009 J. Nano Lett. 9 2730

    [6]

    Guo Z, Zhang D, Gong X G 2009 J. Appl. Phys. Lett. 95 16310

    [7]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687

    [8]

    Li J, Porter L, Yip S 1998 J. Nucl. Mater. 255 139

    [9]

    Zhang H, He X, Zhao M, Zhang M, Zhao L, Feng X 2012 J. Phys. Chem. C 116 16634

    [10]

    Kou J, Zhou X, Chen Y, Lu H, Wu F, Fan J 2013 J. Chem. Phys. 139 064705

    [11]

    WillIan J E, Liu H, Pawel K 2010 Appl. Phys. Lett. 96 203112

    [12]

    Zhang Y Y, Pei Q X, Wang C M 2012 Comp. Mater. Sci. 65 406

    [13]

    Ouyang T, Chen Y P, Liu L M, Xie Y, Wei X L, Zhong J X 2012 Phys. Rev. B 85 235436

    [14]

    Zhang Y Y, Pei Q X, Wang C M 2012 Mater. Sci. 65 406

    [15]

    Zhan H, Zhang Y, Bell J M, Mai Y W, Gu Y 2014 Carbon 77 416

    [16]

    Ouyang T, Chen Y 2012 Phys. Rev. B 85 235436

    [17]

    Liu Y, Hu C, Huang J, Sumpter B G, Qiao R 2015 J. Chem. Phys. 142 244703

    [18]

    Liu Y, Huang J, Yang B, Sumpter B G, Qiao R 2014 Carbon 75 169

    [19]

    Zhan H, Zhang Y, Bell J M, Mai Y W, Gu Y 2014 Carbon 77 416

    [20]

    Wen Z H 2014 M. S. Dissertation (Hunan:Xiangtan University) (in Chinese)[温志宏 2014 硕士学位论文 (湖南:湘潭大学)]

    [21]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472

    [22]

    Shenderova B, Stuart H, Sinnott N 2002 J. Phys:Condens. Matter 14 783

    [23]

    Lu Y, Qian J 2016 Appl. Math. Mech. 37 9 (in Chinese)[鲁莹, 钱劲 2016 应用数学和力学 37 9]

    [24]

    Liu H Y, Li Z 2015 J. Mater. Sci. Engin. 33 1 (in Chinese)[刘海洋, 李政 2015 材料科学与工程学报 33 1]

    [25]

    Huang L Y, Han Q 2012 Sci. Sin.:Phys. Mech. Astron. 42 3 (in Chinese)[黄凌燕, 韩强 2012 中国科学:42 3]

    [26]

    Hui Z X, He P F, Dai Y, Wu A H 2014 Acta Phys. Sin. 63 074401 (in Chinese)[惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉 2014 63 074401]

    [27]

    Tang J J, Feng Y H, Li W, Cui L, Zhang X X 2013 Acta Phys. Sin. 62 226102 (in Chinese)[唐晶晶, 冯妍卉, 李威, 崔柳, 张欣欣 2013 62 226102]

    [28]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306

    [29]

    Che J,öaöin T, Deng W, Goddard W A Ⅲ 2000 J. Chem. Phys. 113 6888

    [30]

    Mller-Plathe F 1999 Phys. Rev. E 59 4894

    [31]

    Berber S, Kwon Y K, Tománek D 2000 Phys Rev Lett. 84 4613

    [32]

    Rosenblum I, Adler J, Brandon S 1998 Comp. Mater. Sci. 12 9

    [33]

    Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 76501 (in Chinese)[杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟 2012 61 76501]

    [34]

    Wei Z Y, Bi K D, Chen Y F 2010 J. Southeast University (Natural Science Edition) 40 306 (in Chinese)[魏志勇, 毕可东, 陈云飞 2010 东南大学学报 40 306]

    [35]

    Yao C J, Wang X M, Li Y Y, Wang J 2013 J. Yangzhou University (Natural Science Edition) 16 22 (in Chinese)[姚承军, 汪晓明, 李莹莹, 王健 2013 扬州大学学报 16 22]

    [36]

    Li W, Feng Y H, Zhang X X, Chen Y 2012 CIESC Journal 63 75 (in Chinese)[李威, 冯妍卉, 张欣欣, 陈阳 2012 化工学报 63 75]

    [37]

    Guo Z X, Zhang D E, Gong X G 2009 J. Appl. Phys. Lett. 95 163103

    [38]

    Alaghemandl M, Algaer E, Bohm M C, Mller-Plathe F 2009 J. Nanotechnology 20 115704

    [39]

    Sho H, Takuma H, Takuma S, James E, Junichiro S 2013 International J. Heat and Mass Transfer 67 1024

    [40]

    Ragesh C, Sarith P S 2013 Solid State Communications 73 1

    [41]

    Rajabpour A, Allaei S M V, Kowsary F 2011 J. Appl. Phys. Lett. 99 051917

    [42]

    Zhou W X, Chen K Q 2015 Carbon 85 24

  • [1]

    Novoselov K S, Geim A K, Morozov S V 2004 J. Sci. 306 666

    [2]

    Kim R, Datta S, Lundstrom M S 2009 J. Appl. Phys. 105 034506

    [3]

    Berber S, Kwon Y K, Tomanek D 2000 J. Phys. Rev. Lett. 84 4613

    [4]

    Ghosh S, Calizo I, Teweldebrhan D 2008 J. Appl. Phys. Lett. 92 151911

    [5]

    Hu J, Ruan X, Chen Y P 2009 J. Nano Lett. 9 2730

    [6]

    Guo Z, Zhang D, Gong X G 2009 J. Appl. Phys. Lett. 95 16310

    [7]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687

    [8]

    Li J, Porter L, Yip S 1998 J. Nucl. Mater. 255 139

    [9]

    Zhang H, He X, Zhao M, Zhang M, Zhao L, Feng X 2012 J. Phys. Chem. C 116 16634

    [10]

    Kou J, Zhou X, Chen Y, Lu H, Wu F, Fan J 2013 J. Chem. Phys. 139 064705

    [11]

    WillIan J E, Liu H, Pawel K 2010 Appl. Phys. Lett. 96 203112

    [12]

    Zhang Y Y, Pei Q X, Wang C M 2012 Comp. Mater. Sci. 65 406

    [13]

    Ouyang T, Chen Y P, Liu L M, Xie Y, Wei X L, Zhong J X 2012 Phys. Rev. B 85 235436

    [14]

    Zhang Y Y, Pei Q X, Wang C M 2012 Mater. Sci. 65 406

    [15]

    Zhan H, Zhang Y, Bell J M, Mai Y W, Gu Y 2014 Carbon 77 416

    [16]

    Ouyang T, Chen Y 2012 Phys. Rev. B 85 235436

    [17]

    Liu Y, Hu C, Huang J, Sumpter B G, Qiao R 2015 J. Chem. Phys. 142 244703

    [18]

    Liu Y, Huang J, Yang B, Sumpter B G, Qiao R 2014 Carbon 75 169

    [19]

    Zhan H, Zhang Y, Bell J M, Mai Y W, Gu Y 2014 Carbon 77 416

    [20]

    Wen Z H 2014 M. S. Dissertation (Hunan:Xiangtan University) (in Chinese)[温志宏 2014 硕士学位论文 (湖南:湘潭大学)]

    [21]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472

    [22]

    Shenderova B, Stuart H, Sinnott N 2002 J. Phys:Condens. Matter 14 783

    [23]

    Lu Y, Qian J 2016 Appl. Math. Mech. 37 9 (in Chinese)[鲁莹, 钱劲 2016 应用数学和力学 37 9]

    [24]

    Liu H Y, Li Z 2015 J. Mater. Sci. Engin. 33 1 (in Chinese)[刘海洋, 李政 2015 材料科学与工程学报 33 1]

    [25]

    Huang L Y, Han Q 2012 Sci. Sin.:Phys. Mech. Astron. 42 3 (in Chinese)[黄凌燕, 韩强 2012 中国科学:42 3]

    [26]

    Hui Z X, He P F, Dai Y, Wu A H 2014 Acta Phys. Sin. 63 074401 (in Chinese)[惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉 2014 63 074401]

    [27]

    Tang J J, Feng Y H, Li W, Cui L, Zhang X X 2013 Acta Phys. Sin. 62 226102 (in Chinese)[唐晶晶, 冯妍卉, 李威, 崔柳, 张欣欣 2013 62 226102]

    [28]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306

    [29]

    Che J,öaöin T, Deng W, Goddard W A Ⅲ 2000 J. Chem. Phys. 113 6888

    [30]

    Mller-Plathe F 1999 Phys. Rev. E 59 4894

    [31]

    Berber S, Kwon Y K, Tománek D 2000 Phys Rev Lett. 84 4613

    [32]

    Rosenblum I, Adler J, Brandon S 1998 Comp. Mater. Sci. 12 9

    [33]

    Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 76501 (in Chinese)[杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟 2012 61 76501]

    [34]

    Wei Z Y, Bi K D, Chen Y F 2010 J. Southeast University (Natural Science Edition) 40 306 (in Chinese)[魏志勇, 毕可东, 陈云飞 2010 东南大学学报 40 306]

    [35]

    Yao C J, Wang X M, Li Y Y, Wang J 2013 J. Yangzhou University (Natural Science Edition) 16 22 (in Chinese)[姚承军, 汪晓明, 李莹莹, 王健 2013 扬州大学学报 16 22]

    [36]

    Li W, Feng Y H, Zhang X X, Chen Y 2012 CIESC Journal 63 75 (in Chinese)[李威, 冯妍卉, 张欣欣, 陈阳 2012 化工学报 63 75]

    [37]

    Guo Z X, Zhang D E, Gong X G 2009 J. Appl. Phys. Lett. 95 163103

    [38]

    Alaghemandl M, Algaer E, Bohm M C, Mller-Plathe F 2009 J. Nanotechnology 20 115704

    [39]

    Sho H, Takuma H, Takuma S, James E, Junichiro S 2013 International J. Heat and Mass Transfer 67 1024

    [40]

    Ragesh C, Sarith P S 2013 Solid State Communications 73 1

    [41]

    Rajabpour A, Allaei S M V, Kowsary F 2011 J. Appl. Phys. Lett. 99 051917

    [42]

    Zhou W X, Chen K Q 2015 Carbon 85 24

  • [1] Liu Dong-Jing, Zhou Fu, Hu Zhi-Liang, Huang Jia-Qiang. Molecular dynamics study of interfacial thermal transport properties of graphene/GaN heterostructure. Acta Physica Sinica, 2024, 73(13): 137901. doi: 10.7498/aps.73.20240021
    [2] Liu Dong-Jing, Hu Zhi-Liang, Zhou Fu, Wang Peng-Bo, Wang Zhen-Dong, Li Tao. Interfacial thermal conductance of gallium nitride/graphene/diamond heterostructure based on molecular dynamics simulation. Acta Physica Sinica, 2024, 73(15): 150202. doi: 10.7498/aps.73.20240515
    [3] Li Yao-Long, Li Zhe, Li Song-Yuan, Zhang Ren-Liang. Regulation of thermal conductivity of bilayer graphene nanoribbon through interlayer covalent bond and tensile strain. Acta Physica Sinica, 2023, 72(24): 243101. doi: 10.7498/aps.72.20231230
    [4] Zheng Cui-Hong, Yang Jian, Xie Guo-Feng, Zhou Wu-Xing, Ouyang Tao. Effect of ion irradiation on thermal conductivity of phosphorene and underlying mechanism. Acta Physica Sinica, 2022, 71(5): 056101. doi: 10.7498/aps.71.20211857
    [5] Wang Fu, Zhou Yi, Gao Shi-Xin, Duan Zhen-Gang, Sun Zhi-Peng, Wang Jun, Zou Yu, Fu Bao-Qin. Molecular dynamics study of effects of point defects on thermal conductivity in cubic silicon carbide. Acta Physica Sinica, 2022, 71(3): 036501. doi: 10.7498/aps.71.20211434
    [6] Liu Dong-Jing, Wang Shao-Ming, Yang Ping. Thermal property of graphene/silicon carbide heterostructure by molecular dynamics simulation. Acta Physica Sinica, 2021, 70(18): 187302. doi: 10.7498/aps.70.20210613
    [7] Effect of ion irradiation on thermal conductivity of phosphorene and underlying mechanism. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211857
    [8] Effects of point defects on thermal conductivity in cubic silicon carbide: A molecular dynamics study. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211434
    [9] Peng Ya-Jing, Jiang Yan-Xue. Analyses of the influences of molecular vacancy defect on the geometrical structure, electronic structure and vibration characteristics of Hexogeon energetic material. Acta Physica Sinica, 2015, 64(24): 243102. doi: 10.7498/aps.64.243102
    [10] He Hui-Fang, Chen Zhi-Quan. Positron annihilation studied defects and their influence on thermal conductivity of chemically synthesized Bi2Te3 nanocrystal. Acta Physica Sinica, 2015, 64(20): 207804. doi: 10.7498/aps.64.207804
    [11] Zheng Bo-Yu, Dong Hui-Long, Chen Fei-Fan. Characterization of thermal conductivity for GNR based on nonequilibrium molecular dynamics simulation combined with quantum correction. Acta Physica Sinica, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [12] Zhang Cheng-Bin, Cheng Qi-Kun, Chen Yong-Ping. Molecular dynamics simulation on thermal conductivity of nanocomposites embedded with fractal structure. Acta Physica Sinica, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [13] Hui Zhi-Xin, He Peng-Fei, Dai Ying, Wu Ai-Hui. Molecular dynamics simulation of the thermal conductivity of silicon functionalized graphene. Acta Physica Sinica, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [14] Li Wei, Feng Yan-Hui, Tang Jin-Jin, Zhang Xin-Xin. Thermal conductivity and thermal rectification of carbon nanotube Y junctions. Acta Physica Sinica, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [15] Li Wei, Feng Yan-Hui, Chen Yang, Zhang Xin-Xin. Research on the influences of point defects on the thermal conductivity of carbon nanotube by simulation with orthogonal array testing strategy. Acta Physica Sinica, 2012, 61(13): 136102. doi: 10.7498/aps.61.136102
    [16] Yang Ping, Wang Xiao-Liang, Li Pei, Wang Huang, Zhang Li-Qiang, Xie Fang-Wei. The effect of doped nitrogen and vacancy on thermal conductivity of graphenenanoribbon from nonequilibrium molecular dynamics. Acta Physica Sinica, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [17] Yang Ping, Wu Yong-Sheng, Xu Hai-Feng, Xu Xian-Xin, Zhang Li-Qiang, Li Pei. Molecular dynamics simulation of thermal conductivity for the TiO2/ZnO nano-film interface. Acta Physica Sinica, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [18] Yuan Jian-Hui, Cheng Yu-Min, Zhang Zhen-Hua. Effects of vacancy structural defects on the elastic properties of carbon nanotubes. Acta Physica Sinica, 2009, 58(4): 2578-2584. doi: 10.7498/aps.58.2578
    [19] Bao Wen-Xing, Zhu Chang-Chun. Study of thermal conduction of carbon nanotube by molecular dynamics. Acta Physica Sinica, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
    [20] Zhang Chao, Lv Hai-Feng, Zhang Qing-Yu. . Acta Physica Sinica, 2002, 51(10): 2329-2334. doi: 10.7498/aps.51.2329
Metrics
  • Abstract views:  6729
  • PDF Downloads:  299
  • Cited By: 0
Publishing process
  • Received Date:  10 April 2017
  • Accepted Date:  09 May 2017
  • Published Online:  05 July 2017

/

返回文章
返回
Baidu
map