-
The non-equilibrium molecular dynamics (NEMD) method is used to study the thermal conductivities of Si/Ge superlattices with tilted interface under different period lengths, different sample lengths, and different temperatures. The simulation results are as follows. The thermal conductivity of Si/Ge superlattices varies nonmonotonically with the increase of interface angle: when the period length is 4–8 atomic layers, the thermal conductivity for the interface angle of 45° is one order of magnitude larger than those for other interface angles, and the thermal conductivity increases linearly with the sample length increasing and decreases with the temperature increasing. However, when the period length is 20 atomic layers, the thermal conductivity is weakly dependent on sample length and temperature due to the existence of phonon localization.
-
Keywords:
- superlattices /
- tilt angle /
- thermal conductivity /
- molecular dynamic simulation
[1] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军 2016 65 107201
Google Scholar
Zhang Y, Wu L H, Zengli J K, Liu Y F, Zhang J Y, Xing J J, Luo J 2016 Acta. Phys. Sin. 65 107201
Google Scholar
[2] 张程宾, 程启坤, 陈永平 2014 63 236601
Google Scholar
Zhang C B, Cheng Q K, Chen Y P 2014 Acta. Phys. Sin. 63 236601
Google Scholar
[3] Chen Z Y, Wang R F, Wang G Y, Zhou X Y, Wang Z S, Yin C, Hu Q, Zhou B Q, Tang J, Ang R 2018 Chin. Phys. B 27 47202
Google Scholar
[4] Wang K X, Wang J W, Li Y, Zou T, Wang X H, Li J B, Cao Z, Shi W J, Xinba Yaer 2018 Chin. Phys. B 27 48401
Google Scholar
[5] Xu X, Zhou J, Chen J 2020 Adv. Funct. Mater 30 1904704
Google Scholar
[6] Zhang Z W, Ouyang Y L, Cheng Y, Chen J, Li N B, Zhang G 2020 Phys. Rep.-Rev. Sec. Phys. Lett. 860 1
[7] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉 2014 63 074401
Google Scholar
Hui Z X, He P F, Dai Y, Wu A H 2014 Acta. Phys. Sin. 63 074401
Google Scholar
[8] Yang R, Chen G 2004 Phys. Rev. B 69 195316
Google Scholar
[9] Chen G 1998 Phys. Rev. B 57 14958
Google Scholar
[10] Hu M, Poulikakos D 2012 Nano Lett. 12 5487
Google Scholar
[11] Juntunen T, Vänskä O, Tittonen I 2019 Phys. Rev. Lett. 122 105901
Google Scholar
[12] Xiong R, Yang C, Wang Q, Zhang Y, Li X 2019 Int. J. Thermophys. 40 86
Google Scholar
[13] Garg J, Bonini N, Marzari N 2011 Nano Lett. 11 5135
Google Scholar
[14] Luckyanova M N, Garg J, Esfarjani K, Jandl A, Bulsara M T, Schmidt A J, Minnich A J, Chen S, Dresselhaus M S, Ren Z F, Fitzgerald E A, Chen G 2012 Science 338 936
Google Scholar
[15] Cheaito R, Polanco C A, Addamane S, Zhang J, Ghosh A W, Balakrishnan G, Hopkins P E 2018 Phys. Rev. B 97 085306
Google Scholar
[16] Tian Z, Esfarjani K, Chen G 2014 Phys. Rev. B 89 235307
Google Scholar
[17] Tian Z, Esfarjani K, Chen G 2012 Phys. Rev. B 86 235304
Google Scholar
[18] Garg J, Chen G 2013 Phys. Rev. B 87 93
[19] Elapolu M S R, Tabarraei A 2018 Comput. Mater. Sci. 144 161
Google Scholar
[20] 刘英光, 边永庆, 韩中合 2020 69 033101
Google Scholar
Liu Y G, Bian Y Q, Han Z H 2020 Acta. Phys. Sin. 69 033101
Google Scholar
[21] Fujii S, Yokoi T, Yoshiya M 2019 Acta Mater. 171 154
Google Scholar
[22] Bagri A, Kim S P, Ruoff R S, Shenoy V B 2011 Nano Lett. 11 3917
Google Scholar
[23] Tan M, Hao Y, Deng Y, Yan D, Wu Z 2018 Sci Rep 8 6384
Google Scholar
[24] Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306
Google Scholar
[25] Plimpton S 1995 J. Comput. Phys. 117 1
Google Scholar
[26] Dickey J M, Paskin A 1969 Phys. Rev. 188 1407
Google Scholar
[27] Chen J, Zhang G, Li B 2010 Nano Lett. 10 3978
Google Scholar
[28] Zhang Z, Chen Y, Xie Y, Zhang S 2016 Appl. Therm. Eng. 102 1075
Google Scholar
[29] Zhang Z W, Hu S Q, Xi Q, Nakayama T, Volz S, Chen J, Li B W 2020 Phys. Rev. B 101 081402 6
[30] Liang T, Zhou M, Zhang P, Yuan P, Yang D 2020 Int. J. Heat Mass Transfer 151 119395
Google Scholar
[31] Liu Q, Luo H, Wang L, Shen S 2017 J. Phys. D-Appl. Phys. 50 065108
Google Scholar
[32] Ma Y L, Zhang Z W, Chen J G, Saaskilahti K, Volz S, Chen J 2018 Carbon 135 263
Google Scholar
[33] Sääskilahti K, Oksanen J, Tulkki J, Volz S 2014 Phys. Rev. B 90 134312
Google Scholar
[34] Sääskilahti K, Oksanen J, Tulkki J, Volz S 2016 Phys. Rev. E 93 052141
Google Scholar
[35] Hu S Q, Zhang Z W, Jiang P F, Ren W J, Yu C Q, Shiomi J, Chen J 2019 Nanoscale 11 11839
Google Scholar
[36] Hu S Q, Zhang Z W, Jiang P F, Chen J, Volz S, Nomura M, Li B W 2018 J. Phys. Chem. Lett. 9 3959
Google Scholar
[37] Zhang Z W, Hu S Q, Nakayama T, Chen J, Li B W 2018 Carbon 139 289
Google Scholar
-
-
[1] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军 2016 65 107201
Google Scholar
Zhang Y, Wu L H, Zengli J K, Liu Y F, Zhang J Y, Xing J J, Luo J 2016 Acta. Phys. Sin. 65 107201
Google Scholar
[2] 张程宾, 程启坤, 陈永平 2014 63 236601
Google Scholar
Zhang C B, Cheng Q K, Chen Y P 2014 Acta. Phys. Sin. 63 236601
Google Scholar
[3] Chen Z Y, Wang R F, Wang G Y, Zhou X Y, Wang Z S, Yin C, Hu Q, Zhou B Q, Tang J, Ang R 2018 Chin. Phys. B 27 47202
Google Scholar
[4] Wang K X, Wang J W, Li Y, Zou T, Wang X H, Li J B, Cao Z, Shi W J, Xinba Yaer 2018 Chin. Phys. B 27 48401
Google Scholar
[5] Xu X, Zhou J, Chen J 2020 Adv. Funct. Mater 30 1904704
Google Scholar
[6] Zhang Z W, Ouyang Y L, Cheng Y, Chen J, Li N B, Zhang G 2020 Phys. Rep.-Rev. Sec. Phys. Lett. 860 1
[7] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉 2014 63 074401
Google Scholar
Hui Z X, He P F, Dai Y, Wu A H 2014 Acta. Phys. Sin. 63 074401
Google Scholar
[8] Yang R, Chen G 2004 Phys. Rev. B 69 195316
Google Scholar
[9] Chen G 1998 Phys. Rev. B 57 14958
Google Scholar
[10] Hu M, Poulikakos D 2012 Nano Lett. 12 5487
Google Scholar
[11] Juntunen T, Vänskä O, Tittonen I 2019 Phys. Rev. Lett. 122 105901
Google Scholar
[12] Xiong R, Yang C, Wang Q, Zhang Y, Li X 2019 Int. J. Thermophys. 40 86
Google Scholar
[13] Garg J, Bonini N, Marzari N 2011 Nano Lett. 11 5135
Google Scholar
[14] Luckyanova M N, Garg J, Esfarjani K, Jandl A, Bulsara M T, Schmidt A J, Minnich A J, Chen S, Dresselhaus M S, Ren Z F, Fitzgerald E A, Chen G 2012 Science 338 936
Google Scholar
[15] Cheaito R, Polanco C A, Addamane S, Zhang J, Ghosh A W, Balakrishnan G, Hopkins P E 2018 Phys. Rev. B 97 085306
Google Scholar
[16] Tian Z, Esfarjani K, Chen G 2014 Phys. Rev. B 89 235307
Google Scholar
[17] Tian Z, Esfarjani K, Chen G 2012 Phys. Rev. B 86 235304
Google Scholar
[18] Garg J, Chen G 2013 Phys. Rev. B 87 93
[19] Elapolu M S R, Tabarraei A 2018 Comput. Mater. Sci. 144 161
Google Scholar
[20] 刘英光, 边永庆, 韩中合 2020 69 033101
Google Scholar
Liu Y G, Bian Y Q, Han Z H 2020 Acta. Phys. Sin. 69 033101
Google Scholar
[21] Fujii S, Yokoi T, Yoshiya M 2019 Acta Mater. 171 154
Google Scholar
[22] Bagri A, Kim S P, Ruoff R S, Shenoy V B 2011 Nano Lett. 11 3917
Google Scholar
[23] Tan M, Hao Y, Deng Y, Yan D, Wu Z 2018 Sci Rep 8 6384
Google Scholar
[24] Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306
Google Scholar
[25] Plimpton S 1995 J. Comput. Phys. 117 1
Google Scholar
[26] Dickey J M, Paskin A 1969 Phys. Rev. 188 1407
Google Scholar
[27] Chen J, Zhang G, Li B 2010 Nano Lett. 10 3978
Google Scholar
[28] Zhang Z, Chen Y, Xie Y, Zhang S 2016 Appl. Therm. Eng. 102 1075
Google Scholar
[29] Zhang Z W, Hu S Q, Xi Q, Nakayama T, Volz S, Chen J, Li B W 2020 Phys. Rev. B 101 081402 6
[30] Liang T, Zhou M, Zhang P, Yuan P, Yang D 2020 Int. J. Heat Mass Transfer 151 119395
Google Scholar
[31] Liu Q, Luo H, Wang L, Shen S 2017 J. Phys. D-Appl. Phys. 50 065108
Google Scholar
[32] Ma Y L, Zhang Z W, Chen J G, Saaskilahti K, Volz S, Chen J 2018 Carbon 135 263
Google Scholar
[33] Sääskilahti K, Oksanen J, Tulkki J, Volz S 2014 Phys. Rev. B 90 134312
Google Scholar
[34] Sääskilahti K, Oksanen J, Tulkki J, Volz S 2016 Phys. Rev. E 93 052141
Google Scholar
[35] Hu S Q, Zhang Z W, Jiang P F, Ren W J, Yu C Q, Shiomi J, Chen J 2019 Nanoscale 11 11839
Google Scholar
[36] Hu S Q, Zhang Z W, Jiang P F, Chen J, Volz S, Nomura M, Li B W 2018 J. Phys. Chem. Lett. 9 3959
Google Scholar
[37] Zhang Z W, Hu S Q, Nakayama T, Chen J, Li B W 2018 Carbon 139 289
Google Scholar
Catalog
Metrics
- Abstract views: 5645
- PDF Downloads: 117
- Cited By: 0