-
本文结合密度泛函理论与平衡分子动力学模拟,构建了从量子力学到连续介质力学的跨尺度耦合模型,基于所建立的高精度势函数与Green-Kubo线性响应理论,研究了极性分子CO气体在100-800 K温度范围内的剪切粘度与体积粘度。分子动力学模拟基于C语言编程实现,采用自适应时间步长算法以提高计算效率。研究结果表明,CO的体积粘度结果对势函数敏感性明显高于剪切粘度,不同传统方法相应高估了体积粘度;所得体积粘度随温度的变化相对于剪切粘度具有显著的非线性规律;模型采用低体系压力与大体系规模可有效减小统计涨落幅度,提高体积粘度计算的收敛性与可靠性。本研究阐释了CO气体粘度的微观动力学机制,同时可为高温非平衡流动(如高超声速边界层、等离子体输运等)粘度机理研究提供理论参考。Viscosity is an essential transport property in gas dynamics, especially the bulk viscosity which performs of quite more complexity. Carbon monoxide (CO) is molecule of weak polarity, which exists in many important field of combustion and coke metallurgy etc. In order to effectively uncover the mechanism of the CO viscosity, this study dealt with it from a microscopic view. A transcale model was built which integrates density functional theory (DFT, first-principles) calculations with equilibrium molecular dynamics (EMD) simulations to establish the microscale foundation. Based on that, a fitted high-precision potential function was formed, then by using the Green-Kubo linear response theory, the shear and bulk viscosities of CO were achieved over a medium temperature range of 100-800 K. The MD simulation was implemented with C programming language, and an adaptive time-step algorithm was applied that significantly enhanced the computational efficiency. The resulted bulk viscosity exhibits quite obvious sensitivity to the potential function of the molecule system, while the shear viscosity shows little. Comparing to the shear viscosity appearing more of linearity, the bulk viscosity demonstrates certain clear nonlinearity changing with temperature, see Fig. Ab1. Correspondingly, traditional theoretic models and experimental results from different literature showed to overestimate the bulk viscosity to different extent at medium temperatures. Fitting functions on the shear and bulk viscosities in the defined temperature range were established, respectively. Additionally, lower system pressure and larger system size with the model turned out to both effectively reduce statistical pressure difference fluctuations and improve the convergence in related laws, respectively. This work elucidates the microscopic mechanism of CO viscosity and further provides a high-fidelity theoretical tool for modeling viscosity of high-temperature nonequilibrium gas flows (e.g., hypersonic boundary layers, plasma transport, etc.).
-
Keywords:
- DFT /
- Potential function /
- MD /
- Shear viscosity /
- Bulk viscosity /
- Nonlinearity
-
[1] Li Z H, Liang J, Li Z H, Li H Y, Wu J L, Dai J W, Tang Z G 2018 Acta Aerodyn. Sin. 36 826(in Chinese)[李志辉,梁杰,李中华,李海燕,吴俊林,戴金雯,唐志共 2018 空气动力学学报 36 826]
[2] Luo S C, Zhang Z G, Liu J, Gong H M, Hu S C, Wu L Y, Chang Y, Zhuang N, Li X, Huang C Y 2023 Acta Mech. Sinica. 55 2439(in Chinese)[罗仕超,张志刚,柳军,龚红明,胡守超,吴里银,常雨,庄宇,李贤,黄成扬 2023 力学学报55 2439]
[3] Xing H W, Chen Z X, Yang L ,Su Y, Li Y H, Huhe Cang 2024 Acta Phys. Sin. 73 094701(in Chinese)[邢赫威,陈占秀,杨历,苏瑶,李源华,呼和仓2024 73 094701]
[4] Qian X S 1946 J. Math. Phys. 25 247
[5] Fan J 2013 AIM 43 185(in Chinese)[樊菁 2013 力学进展 43 185]
[6] Bruno D, Frezzotti A, Ghiroldi, G P 2015 Phys. Fluids 27 057101
[7] Tokumasu T, Matsumoto Y 2000 JSME Int J., Ser. B 43 288
[8] Li J, Geng X R, Chen J J, Jiang D W 2016 AMM 37 1403(in Chinese)[李锦, 耿湘人, 陈坚强, 江定武 2016 应用数学和力学 37 1403]
[9] Valentini P, Zhang C, Schwartzentruber T E 2012 Phys. Fluids 24 106101
[10] Baidakov V, Protsenko S, Kozlova Z 2012 J. Chem. Phys. 137 164507
[11] Baidakov V G, Protsenko S P 2014 J. Chem. Phys. 141 114503
[12] Sharma B, Kumar R 2019 Phys. Rev. E 100 090003
[13] Parker J G, Adams C E, Stavseth R M 1953 J. Acoust. Soc. Am. 25 263
[14] Marcy S J 1990 AIAA J. 28 171
[15] Dukhin A S, Goetz P J 2009 J. Chem. Phys. 130 124519
[16] Gu Z, Ubachs W 2013 Opt. Lett. 38 1110
[17] Carnevale E H, Carey C, Larson G 1967 J. Chem. Phys. 47 2829
[18] Zhao N B, Zheng H T, Li S Y 2018 JMSA 39 60(in Chinese)[赵宁波,郑洪涛,李淑英 2018 哈尔滨工程大学学报 39 60]
[19] Kubo, R 1985 Pure Appl. Chem. 57 201
[20] Hellmann R 2013 Mol. Phys. 111 387
[21] Cramer M S 2012 Phys. Fluids 24 066102
[22] Lu T, Chen F. 2013 J. Mol. Model 19 5387
[23] KASPER P K. 2017 J. Phys. Chem. A 121 9092
[24] Vogel, E. 2012 Int. J. Thermophys 33 741
[25] Heck E L, Dickinson A S 1995 Physica A 217 107
[26] Carnevale, E. H.; Carey, C.; Larson, G. 1967 J. Chem. Phy. 4 2829
计量
- 文章访问数: 47
- PDF下载量: 1
- 被引次数: 0