搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石/环氧树脂复合物热导率的分子动力学模拟

刘秀成 杨智 郭浩 陈颖 罗向龙 陈健勇

引用本文:
Citation:

金刚石/环氧树脂复合物热导率的分子动力学模拟

刘秀成, 杨智, 郭浩, 陈颖, 罗向龙, 陈健勇

Molecular dynamics simulation of thermal conductivity of diamond/epoxy resin composites

Liu Xiu-Cheng, Yang Zhi, Guo Hao, Chen Ying, Luo Xiang-Long, Chen Jian-Yong
PDF
HTML
导出引用
  • 提高环氧树脂热界面材料热导率对解决5G等微电子芯片高热流密度散热问题具有重要意义. 采用非平衡态分子动力学方法, 重点研究了纳米金刚石填料的不同填充方式对环氧树脂基复合物热导率的影响. 结果表明, 单颗粒填充方式下, 复合物热导率随金刚石尺寸的增大而增大, 大尺寸金刚石填料可以降低复合物的自由体积分数, 对热导率的提升效果更显著; 多颗粒填充方式下, 复合物热导率随颗粒数的增多呈先增大后减小的趋势, 增加颗粒数可以减小复合物的自由体积分数, 但具有更大的比表面积及界面热阻, 其对热导率的削弱作用更为显著. 此外, 同一质量分数下, 增大纳米金刚石颗粒尺寸比增加颗粒数对复合物热导率的提升效果更为显著. 本文研究对具有高热导率的纳米金刚石/环氧树脂复合物热界面材料的设计和制备具有指导意义.
    Improving the thermal conductivity (TC) of epoxy resin thermal interface material is of great significance in tackling the heat dissipation problem of high heat flux in microelectronic chips such as 5G. Using non-equilibrium molecular dynamics (MD) method, the effects of two different filling styles of nano-diamond fillers on the TC of EP based composites are investigated. The results show that the TC of the composite increases with the diamond size when single-particle filling is used, and that a larger diamond size leads to a more significant reduction of the free volume fraction and thus an improvement of the TC. In the multi-particle packing, the composite TC first increases and then decreases with increasing particle number. Increasing the number of particles reduces the free volume fraction, but also results in a larger specific surface area and interfacial thermal resistance, which has a more significant weakening effect on the TC. Moreover, within the same mass fraction of nano-diamond filler, increasing the filler size has a more significant TC improvement on the composite than increasing the number of particles. This study is instructive for the design and preparation of high thermal conductivity nanodiamond/epoxy resin composites.
      通信作者: 杨智, yangzhi@gdut.edu.cn
    • 基金项目: 国家自然科学基金联合基金(批准号: U20A20299)资助的课题.
      Corresponding author: Yang Zhi, yangzhi@gdut.edu.cn
    • Funds: Project supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U20A20299).
    [1]

    Singha S, Thomas M J 2008 IEEE Trans. Dielectr. Electr. Insul. 15 2Google Scholar

    [2]

    Li M, Zhou H, Zhang Y, Liao Y, Zhou H 2018 Carbon 130 295Google Scholar

    [3]

    Han Y, Shi X, Wang S, Ruan K, Lu C, Guo Y, Gu J 2021 Composites Part B 210 108666Google Scholar

    [4]

    Chen H, Ginzburg V V, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B 2016 Prog. Polym. Sci. 59 41Google Scholar

    [5]

    Liu X, Yu X, Yang Z, Zhuang X, Guo H, Luo X, Chen J, Liang Y, Chen Y 2023 J. Electron. Mater. 52 2831Google Scholar

    [6]

    Wang X, Sun L, Zhang X, Zhang S, Wang J, Zhang Y 2020 J. Mol. Liq. 309 113162Google Scholar

    [7]

    Wang Y, Chang Z, Gao K, Li Z, Hou G, Liu J, Zhang L 2021 Polymer 224 123697Google Scholar

    [8]

    Lian G, Tuan C C, Li L, Jiao S, Wang Q, Moon K S, Cui D, Wong C P 2016 Chem. Mater. 28 6096Google Scholar

    [9]

    Wu H, Gao J, Xiong Y, Zhu Q, Yue Y 2021 Int. J. Heat Mass Transfer 178 121634Google Scholar

    [10]

    Nejad S M, Srivastava R, Bellussi F M, Thielemann H C, Asinari P, Fasano M 2021 Int. J. Therm. Sci. 159 106588Google Scholar

    [11]

    Fasanella N A, Sundararaghavan V 2016 JOM 68 1396Google Scholar

    [12]

    Yang K, Chen W, Zhao Y, Ding L, Du B, Zhang S, Yang W 2021 Compos. Sci. Technol. 221 109178Google Scholar

    [13]

    Kang E, Choi S, Choi C, Shim S E 2012 Colloids Surf. A 415 255Google Scholar

    [14]

    Cho H B, Konno A, Fujihara T, Suzuki T, Tanaka S, Jiang W, Suematsu H, Niihara K, Nakayama T 2011 Compos. Sci. Technol. 72 112Google Scholar

    [15]

    Sun M, Yang L, Liu K, Gao G, Su Z, Gao G, Liu B, Wang W, Han J, Dai B 2019 Composites Part A 127 105618Google Scholar

    [16]

    Neitzel I, Mochalin V, Knoke I, Palmese G R, Gogotsi Y 2011 Compos. Sci. Technol. 71 710Google Scholar

    [17]

    Alder B J, Wainwright T E 1957 J. Chem. Phys. 27 1208Google Scholar

    [18]

    Yang X, Wang X, Wang W, Fu Y, Xie Q 2020 Int. J. Heat Mass Transfer 159 120105Google Scholar

    [19]

    Zhu M, Li J, Chen J, Song H, Zhang H 2019 Comput. Mater. Sci. 164 108Google Scholar

    [20]

    Li C, Strachan A 2011 Polymer 52 2920Google Scholar

    [21]

    Hansen J P, McDonald I R 2013 Theory of Simple Liquids: with Applications to Soft Matter (4th Ed.) (Washington, DC: Academic Press) pp311–362

    [22]

    Alaghemandi M, Müller-Plathe F, Böhm M C 2011 J. Chem. Phys. 135 184905Google Scholar

    [23]

    Shavikloo M, Kimiagar S 2017 Comput. Mater. Sci. 139 330Google Scholar

    [24]

    Müller-Plathe F 1997 J. Chem. Phys. 106 6082Google Scholar

    [25]

    Ikeshoji T, Hafskjold B 1994 Mol. Phys. 81 251Google Scholar

    [26]

    Choi J, Shin H, Cho M 2016 Polymer 89 159Google Scholar

    [27]

    Xiong Q L, Meguid S A 2015 Eur. Polym. J. 69 1Google Scholar

    [28]

    Li S, Yu X, Bao H, Yang N 2018 J. Phys. Chem. C 122 13140Google Scholar

    [29]

    Huo R, Zhang Z, Athir N, Fan Y, Liu J, Shi L 2020 Phys. Chem. Chem. Phys. 22 19735Google Scholar

    [30]

    Wan X, Demir B, An M, Walsh T R, Yang N 2021 Int. J. Heat Mass Transfer 180 121821Google Scholar

    [31]

    Liu X, Rao Z 2020 Comput. Mater. Sci. 172 109298Google Scholar

    [32]

    徐文雪, 梁新刚, 徐向华, 祝渊 2020 69 196601Google Scholar

    Xu W X, Liang X G, Xu X H, Zhu Y 2020 Acta Phys. Sin. 69 196601Google Scholar

    [33]

    An M, Demir B, Wan X, Meng H, Yang N, Walsh T R 2019 Adv. Theor. Simul. 2 1800153Google Scholar

    [34]

    Kikugawa G, Desai T G, Keblinski P, Ohara T 2013 J. Appl. Phys. 114 034302Google Scholar

    [35]

    Pashayi K, Fard H R, Lai F, Iruvanti S, Plawsky J, Borca-Tasciuc T 2012 J. Appl. Phys. 111 104310Google Scholar

    [36]

    Fu J, Shi L, Zhang D, Zhong Q, Chen Y 2010 Polym. Eng. Sci. 50 1809Google Scholar

    [37]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605Google Scholar

    [38]

    Wang Y, Yang C, Mai Y W, Zhang Y 2016 Carbon 102 311Google Scholar

    [39]

    Wang Y, Yang C, Pei Q X, Zhang Y 2016 ACS Appl. Mater. Interfaces 8 8272Google Scholar

    [40]

    Li C, Medvedev G A, Lee E W, Kim J, Caruthers J M, Strachan A 2012 Polymer 53 4222Google Scholar

  • 图 1  (a) DGEBF, DETDA和金刚石颗粒的分子结构; (b) 计算流程图; (c) 交联反应流程图; (d) 非晶模型; (e) 交联模型

    Fig. 1.  (a) Molecular structures of DGEBF, DETDA and diamond particle; (b) calculation flow charts; (c) process of crosslinking reaction; (d) amorphous model; (e) crosslinked model.

    图 2  (a) 热传导方向示意图; (b) 冷热端的能量变化; (c) 环氧树脂在x方向上的温度分布

    Fig. 2.  (a) Schematic diagram of heat conduction direction; (b) energy change in hot and cold regions; (c) temperature distribution in the x direction of the epoxy resin.

    图 3  不同交联率的模型结构 (a) 0%; (b) 32.81%; (c) 64.06%; (d) 90.00%

    Fig. 3.  Model structures with different cross-linking rates: (a) 0%; (b) 32.81%; (c) 64.06%; (d) 90.00%.

    图 4  环氧树脂热导率与交联率的函数关系

    Fig. 4.  Functional relationship between thermal conductivity and cross-linking rate of epoxy resin.

    图 5  不同粒径复合物 (a) 结构图; (b) 热导率; (c) 径向分布函数

    Fig. 5.  Different particle size composites: (a) Structure diagram; (b) thermal conductivity; (c) radial distribution function.

    图 6  不同粒径复合物的自由体积示意图 (a) 1.0 nm; (b) 1.2 nm; (c) 1.6 nm; (d) 2.0 nm

    Fig. 6.  Free volume diagram of composites with different particle sizes: (a) 1.0 nm; (b) 1.2 nm; (c) 1.6 nm; (d) 2.0 nm.

    图 7  不同颗粒数复合物 (a) 结构图; (b) 热导率; (c) 振动态密度图谱

    Fig. 7.  Composites with different particle numbers: (a) Structure diagram; (b) thermal conductivity; (c) vibrational density of state.

    图 8  不同质量分数复合物的热导率

    Fig. 8.  Thermal conductivity of composites with different mass fractions.

    表 1  不同粒径复合物的自由体积

    Table 1.  Free volumes of composites with different particle sizes.

    金刚石粒径/nm金刚石质量分数/%占有体积/Å3自由体积/Å3自由体积分数/%
    0031583.637827.4819.86
    1.04.1832166.776164.5616.08
    1.27.8432714.455616.8814.65
    1.411.9233333.224998.1113.04
    1.615.6933869.134462.2111.64
    1.820.9134920.743410.598.90
    2.026.1535555.492775.847.24
    下载: 导出CSV

    表 2  不同颗粒数复合物的自由体积

    Table 2.  Free volumes of composites with different particle numbers.

    金刚石数目/个金刚石质量分数/%占有体积/Å3自由体积/Å3自由体积分数/%
    0031583.637827.4819.86
    14.1832166.776164.5616.08
    28.0332852.435478.9114.29
    311.5833638.614692.7212.24
    414.8633818.234513.1111.77
    620.7535202.993128.348.16
    1030.3836910.391420.943.71
    下载: 导出CSV
    Baidu
  • [1]

    Singha S, Thomas M J 2008 IEEE Trans. Dielectr. Electr. Insul. 15 2Google Scholar

    [2]

    Li M, Zhou H, Zhang Y, Liao Y, Zhou H 2018 Carbon 130 295Google Scholar

    [3]

    Han Y, Shi X, Wang S, Ruan K, Lu C, Guo Y, Gu J 2021 Composites Part B 210 108666Google Scholar

    [4]

    Chen H, Ginzburg V V, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B 2016 Prog. Polym. Sci. 59 41Google Scholar

    [5]

    Liu X, Yu X, Yang Z, Zhuang X, Guo H, Luo X, Chen J, Liang Y, Chen Y 2023 J. Electron. Mater. 52 2831Google Scholar

    [6]

    Wang X, Sun L, Zhang X, Zhang S, Wang J, Zhang Y 2020 J. Mol. Liq. 309 113162Google Scholar

    [7]

    Wang Y, Chang Z, Gao K, Li Z, Hou G, Liu J, Zhang L 2021 Polymer 224 123697Google Scholar

    [8]

    Lian G, Tuan C C, Li L, Jiao S, Wang Q, Moon K S, Cui D, Wong C P 2016 Chem. Mater. 28 6096Google Scholar

    [9]

    Wu H, Gao J, Xiong Y, Zhu Q, Yue Y 2021 Int. J. Heat Mass Transfer 178 121634Google Scholar

    [10]

    Nejad S M, Srivastava R, Bellussi F M, Thielemann H C, Asinari P, Fasano M 2021 Int. J. Therm. Sci. 159 106588Google Scholar

    [11]

    Fasanella N A, Sundararaghavan V 2016 JOM 68 1396Google Scholar

    [12]

    Yang K, Chen W, Zhao Y, Ding L, Du B, Zhang S, Yang W 2021 Compos. Sci. Technol. 221 109178Google Scholar

    [13]

    Kang E, Choi S, Choi C, Shim S E 2012 Colloids Surf. A 415 255Google Scholar

    [14]

    Cho H B, Konno A, Fujihara T, Suzuki T, Tanaka S, Jiang W, Suematsu H, Niihara K, Nakayama T 2011 Compos. Sci. Technol. 72 112Google Scholar

    [15]

    Sun M, Yang L, Liu K, Gao G, Su Z, Gao G, Liu B, Wang W, Han J, Dai B 2019 Composites Part A 127 105618Google Scholar

    [16]

    Neitzel I, Mochalin V, Knoke I, Palmese G R, Gogotsi Y 2011 Compos. Sci. Technol. 71 710Google Scholar

    [17]

    Alder B J, Wainwright T E 1957 J. Chem. Phys. 27 1208Google Scholar

    [18]

    Yang X, Wang X, Wang W, Fu Y, Xie Q 2020 Int. J. Heat Mass Transfer 159 120105Google Scholar

    [19]

    Zhu M, Li J, Chen J, Song H, Zhang H 2019 Comput. Mater. Sci. 164 108Google Scholar

    [20]

    Li C, Strachan A 2011 Polymer 52 2920Google Scholar

    [21]

    Hansen J P, McDonald I R 2013 Theory of Simple Liquids: with Applications to Soft Matter (4th Ed.) (Washington, DC: Academic Press) pp311–362

    [22]

    Alaghemandi M, Müller-Plathe F, Böhm M C 2011 J. Chem. Phys. 135 184905Google Scholar

    [23]

    Shavikloo M, Kimiagar S 2017 Comput. Mater. Sci. 139 330Google Scholar

    [24]

    Müller-Plathe F 1997 J. Chem. Phys. 106 6082Google Scholar

    [25]

    Ikeshoji T, Hafskjold B 1994 Mol. Phys. 81 251Google Scholar

    [26]

    Choi J, Shin H, Cho M 2016 Polymer 89 159Google Scholar

    [27]

    Xiong Q L, Meguid S A 2015 Eur. Polym. J. 69 1Google Scholar

    [28]

    Li S, Yu X, Bao H, Yang N 2018 J. Phys. Chem. C 122 13140Google Scholar

    [29]

    Huo R, Zhang Z, Athir N, Fan Y, Liu J, Shi L 2020 Phys. Chem. Chem. Phys. 22 19735Google Scholar

    [30]

    Wan X, Demir B, An M, Walsh T R, Yang N 2021 Int. J. Heat Mass Transfer 180 121821Google Scholar

    [31]

    Liu X, Rao Z 2020 Comput. Mater. Sci. 172 109298Google Scholar

    [32]

    徐文雪, 梁新刚, 徐向华, 祝渊 2020 69 196601Google Scholar

    Xu W X, Liang X G, Xu X H, Zhu Y 2020 Acta Phys. Sin. 69 196601Google Scholar

    [33]

    An M, Demir B, Wan X, Meng H, Yang N, Walsh T R 2019 Adv. Theor. Simul. 2 1800153Google Scholar

    [34]

    Kikugawa G, Desai T G, Keblinski P, Ohara T 2013 J. Appl. Phys. 114 034302Google Scholar

    [35]

    Pashayi K, Fard H R, Lai F, Iruvanti S, Plawsky J, Borca-Tasciuc T 2012 J. Appl. Phys. 111 104310Google Scholar

    [36]

    Fu J, Shi L, Zhang D, Zhong Q, Chen Y 2010 Polym. Eng. Sci. 50 1809Google Scholar

    [37]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605Google Scholar

    [38]

    Wang Y, Yang C, Mai Y W, Zhang Y 2016 Carbon 102 311Google Scholar

    [39]

    Wang Y, Yang C, Pei Q X, Zhang Y 2016 ACS Appl. Mater. Interfaces 8 8272Google Scholar

    [40]

    Li C, Medvedev G A, Lee E W, Kim J, Caruthers J M, Strachan A 2012 Polymer 53 4222Google Scholar

  • [1] 阴凯, 郭其阳, 张添胤, 李静, 陈向荣. 表面氟化聚苯乙烯纳米微球提升环氧树脂绝缘特性.  , 2024, 73(12): 127703. doi: 10.7498/aps.73.20240215
    [2] 徐文雪, 梁新刚, 徐向华, 祝渊. 交联对硅橡胶热导率影响的分子动力学模拟.  , 2020, 69(19): 196601. doi: 10.7498/aps.69.20200737
    [3] 茹佳胜, 闵道敏, 张翀, 李盛涛, 邢照亮, 李国倡. 直流电晕充电下环氧树脂表面电位衰减特性的研究.  , 2016, 65(4): 047701. doi: 10.7498/aps.65.047701
    [4] 宋青, 权伟龙, 冯田均, 俄燕. CH基团与金刚石(111)面的碰撞反应及其对碳膜生长的影响.  , 2016, 65(3): 030701. doi: 10.7498/aps.65.030701
    [5] 林生军, 黄印, 谢东日, 闵道敏, 王威望, 杨柳青, 李盛涛. 环氧树脂高温分子链松弛与玻璃化转变特性.  , 2016, 65(7): 077701. doi: 10.7498/aps.65.077701
    [6] 艾立强, 张相雄, 陈民, 熊大曦. 类金刚石薄膜在硅基底上的沉积及其热导率.  , 2016, 65(9): 096501. doi: 10.7498/aps.65.096501
    [7] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究.  , 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [8] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯热导率的分子动力学模拟.  , 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [9] 袁思伟, 冯妍卉, 王鑫, 张欣欣. α-Al2O3介孔材料导热特性的模拟.  , 2014, 63(1): 014402. doi: 10.7498/aps.63.014402
    [10] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法.  , 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [11] 鲍华. 固体氩的晶格热导率的非简谐晶格动力学计算.  , 2013, 62(18): 186302. doi: 10.7498/aps.62.186302
    [12] 杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟. 氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟.  , 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [13] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟.  , 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [14] 权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏. 类金刚石薄膜力学特性的分子动力学模拟.  , 2010, 59(8): 5687-5691. doi: 10.7498/aps.59.5687
    [15] 梁中翥, 梁静秋, 郑娜, 姜志刚, 王维彪, 方伟. 吸收辐射复合金刚石膜的制备及光学研究.  , 2009, 58(11): 8033-8038. doi: 10.7498/aps.58.8033
    [16] 李荣斌. 硼/氮原子共注入金刚石的原子级研究.  , 2007, 56(1): 395-399. doi: 10.7498/aps.56.395
    [17] 吴国强, 孔宪仁, 孙兆伟, 王亚辉. 氩晶体薄膜法向热导率的分子动力学模拟.  , 2006, 55(1): 1-5. doi: 10.7498/aps.55.1
    [18] 李荣斌, 戴永兵, 胡晓君, 沈荷生, 何贤昶. 能量粒子轰击金刚石的计算机模拟.  , 2003, 52(12): 3135-3141. doi: 10.7498/aps.52.3135
    [19] 胡晓君, 戴永兵, 何贤昶, 沈荷生, 李荣斌. 空位在金刚石近(001)表面扩散的分子动力学模拟.  , 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
    [20] 戴永兵, 沈荷生, 张志明, 何贤昶, 胡晓君, 孙方宏, 莘海维. 金刚石/硅(001)异质界面的分子动力学模拟研究.  , 2001, 50(2): 244-250. doi: 10.7498/aps.50.244
计量
  • 文章访问数:  3645
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-28
  • 修回日期:  2023-03-23
  • 上网日期:  2023-06-14
  • 刊出日期:  2023-08-20

/

返回文章
返回
Baidu
map