-
The phase transition in liquid due to the excitation of zero-net-mass-flux jet is simulated using the lattice Boltzmann method. First, the scheme for inlet/outlet boundary of the specific zero-net-mass-flux jet is derived. Then, with the model proposed by Shan and Doolen for single component and multiphase flow, the process of a single bubble formation in a liquid-filled square cavity is simulated, with the excitation of zero-net-mass-flux jet taken into consideration. Further, the investigation of the effects of three significant parameters, ε/T, T and vout/vin, on phase transition in the square cavity is carried out. The results show that the number of vapor nodes increases rapidly in the early stage of phase transition, and then achieves a constant after a long term fluctuation. In some sense, the previously mentioned parameters except T reflect the rapid change of jet velocity when the stages of inflow and outflow are transformed into each other. Thus the evolution of phase transition in liquid can be affected by the parameters ε/T and vout/vin mainly, but by parameter T negligibly. When ε/T is small, the single bubble resulting from phase transition is separated from the boundary. On the contrary, when ε/T is large, the corresponding single bubble attaches to the bottom boundary, and the process of phase transition is accelerated. Moreover, with vout/vin increases, the domain filled by vapor phase in the square cavity, decreases slightly. In summary, this study reveals the details of phase transition process in liquid subjected to the zero-net-mass-flux jet.
-
Keywords:
- zero-net-mass-flux jet /
- phase transition /
- cavitation /
- lattice Boltzmann method
[1] Ceccio S 2010 Annu. Rev. Fluid. Mech. 42 183
[2] Soyama H, Yanauchi Y, Sato K, Ikohagi T, Oba R, Oshima R 1996 Exp. Therm. Fluid. Sci. 12 411
[3] Cai B H 2005 M. S. Dissertation (Wuhan: Wuhan University) (in Chinese) [蔡标华 2005 硕士学位论文 (武汉: 武汉大学)]
[4] Soyama H 2005 J. Fluid. Eng.-T. ASME 127 1095
[5] Yang M, Zhang F, Kang C, Gao B 2010 Chin. J. Mech. Eng.-EN. 23 797
[6] Wright M, Epps B, Dropkin A, Truscott T 2013 Exp. Fluids 54 1541
[7] Alehossein H, Qin Z 2007 Int. J. Numer. Meth. Eng. 72 780
[8] Peng G, Shimizu S, Fujikawa S 2011 J. Fluid. Sci. Tech. 6 499
[9] Lu Y Y, Wang X C, Kang Y, Chen Y L 2009 J. China Univ. Petroleum (Edition of Natural Sciences) 33 57 (in Chinese) [卢义玉, 王晓川, 康勇, 陈宇龙 2009 中国石油大学学报 (自然科学版) 33 57]
[10] Tan F 2011 M. S. Dissertation (Daqing: Northeast Petroleum University) (in Chinese) [谭放 2011 硕士学位论文 (大庆: 东北石油大学)]
[11] Li H B, Huang P H, Liu M R, Kong L J 2001 Acta Phys. Sin. 50 837 (in Chinese) [李华兵, 黄乒花, 刘慕仁, 孔令江 2001 50 837]
[12] Ma C F 2006 Acta Aerodyn. Sin. 24 495 (in Chinese) [马昌凤 2006 空气动力学学报 24 495]
[13] L X Y, Li H B 2001 Acta Phys. Sin. 50 422 (in Chinese) [吕晓阳, 李华兵 2001 50 422]
[14] Succi S 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford: Oxford University Press) pp97–253
[15] He Y L, Wang Y, Li Q 2009 Lattice Boltzmann Method: Theory and Applications (Beijing: Science Press) pp174–206 (in Chinese) [何雅玲, 王勇, 李庆 2009 格子Boltzmann方法的理论及应用 (北京: 科学出版社) 第174–206页]
[16] Guo Y L, Xu H H, Shen S Q, Wei L 2013 Acta Phys. Sin. 62 144704 (in Chinese) [郭亚丽, 徐鹤函, 沈胜强, 魏兰 2013 62 144704]
[17] Dawson S, Chen S, Doolen G 1993 J. Chem. Phys. 98 1514
[18] Shan X, Chen H 1993 Phys. Rev. E 47 1815
[19] Shan X, Doolen G 1995 J. Stat. Phys. 81 379
[20] Sankaranarayanan K, Shan X, Kevrekidis I, Sundaresan S 2002 J. Fluid. Mech. 452 61
[21] Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明 2010 59 178]
[22] Zou Q, He X 1997 Phys. Fluids 9 1591
[23] Guo Z, Zheng C, Shi B 2002 Chin. Phys. 11 366
-
[1] Ceccio S 2010 Annu. Rev. Fluid. Mech. 42 183
[2] Soyama H, Yanauchi Y, Sato K, Ikohagi T, Oba R, Oshima R 1996 Exp. Therm. Fluid. Sci. 12 411
[3] Cai B H 2005 M. S. Dissertation (Wuhan: Wuhan University) (in Chinese) [蔡标华 2005 硕士学位论文 (武汉: 武汉大学)]
[4] Soyama H 2005 J. Fluid. Eng.-T. ASME 127 1095
[5] Yang M, Zhang F, Kang C, Gao B 2010 Chin. J. Mech. Eng.-EN. 23 797
[6] Wright M, Epps B, Dropkin A, Truscott T 2013 Exp. Fluids 54 1541
[7] Alehossein H, Qin Z 2007 Int. J. Numer. Meth. Eng. 72 780
[8] Peng G, Shimizu S, Fujikawa S 2011 J. Fluid. Sci. Tech. 6 499
[9] Lu Y Y, Wang X C, Kang Y, Chen Y L 2009 J. China Univ. Petroleum (Edition of Natural Sciences) 33 57 (in Chinese) [卢义玉, 王晓川, 康勇, 陈宇龙 2009 中国石油大学学报 (自然科学版) 33 57]
[10] Tan F 2011 M. S. Dissertation (Daqing: Northeast Petroleum University) (in Chinese) [谭放 2011 硕士学位论文 (大庆: 东北石油大学)]
[11] Li H B, Huang P H, Liu M R, Kong L J 2001 Acta Phys. Sin. 50 837 (in Chinese) [李华兵, 黄乒花, 刘慕仁, 孔令江 2001 50 837]
[12] Ma C F 2006 Acta Aerodyn. Sin. 24 495 (in Chinese) [马昌凤 2006 空气动力学学报 24 495]
[13] L X Y, Li H B 2001 Acta Phys. Sin. 50 422 (in Chinese) [吕晓阳, 李华兵 2001 50 422]
[14] Succi S 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford: Oxford University Press) pp97–253
[15] He Y L, Wang Y, Li Q 2009 Lattice Boltzmann Method: Theory and Applications (Beijing: Science Press) pp174–206 (in Chinese) [何雅玲, 王勇, 李庆 2009 格子Boltzmann方法的理论及应用 (北京: 科学出版社) 第174–206页]
[16] Guo Y L, Xu H H, Shen S Q, Wei L 2013 Acta Phys. Sin. 62 144704 (in Chinese) [郭亚丽, 徐鹤函, 沈胜强, 魏兰 2013 62 144704]
[17] Dawson S, Chen S, Doolen G 1993 J. Chem. Phys. 98 1514
[18] Shan X, Chen H 1993 Phys. Rev. E 47 1815
[19] Shan X, Doolen G 1995 J. Stat. Phys. 81 379
[20] Sankaranarayanan K, Shan X, Kevrekidis I, Sundaresan S 2002 J. Fluid. Mech. 452 61
[21] Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明 2010 59 178]
[22] Zou Q, He X 1997 Phys. Fluids 9 1591
[23] Guo Z, Zheng C, Shi B 2002 Chin. Phys. 11 366
Catalog
Metrics
- Abstract views: 6625
- PDF Downloads: 456
- Cited By: 0