搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声悬浮过程的格子Boltzmann方法研究

解文军 滕鹏飞

引用本文:
Citation:

声悬浮过程的格子Boltzmann方法研究

解文军, 滕鹏飞

Study of acoustic levitation by lattice Boltzmann method

Xie Wen-Jun, Teng Peng-Fei
PDF
导出引用
  • 采用轴对称多弛豫时间格子Boltzmann (LB)方法,研究了圆柱形封闭谐振腔中圆盘形样品的声悬浮过程. 模拟结果表明,(001) 模式下谐振腔的共振长度L=0.499λ,在谐振腔中心引入样品后共振漂移量δL≈-0.9,这与线性声学理论计算结果基本相符. 声悬浮力的LB模拟过程包含了黏滞性效应和共振漂移效应,所获得的模拟结果与理论公式计算值在量值上一致,而且其在细节上更符合实验现象. 此外,LB模拟还揭示出了声悬浮过程中的声压波形畸变、声流和声辐射压等非线性声学效应.
    The axisymmetric multiple-relaxation-time lattice Boltzmann (LB) method is used to study the acoustic levitation of a rigid disk sample in a closed cylindrical resonant chamber. The simulation results show that the resonant cavity length L is equal to 0.499λ for (001) mode, and the resonance shift δL is approximately equal to-0.9 with a disk sample located in the chamber center, which accord with the analytical results derived from linear acoustics. The LB method naturally includes the viscosity and resonance shift during the simulation of acoustic levitation force on the disk sample, which gives the results not only consistent with the theory in magnitude, but also coherent with the experiments in more details. Some of the nonlinear effects associated with acoustic levitation, such as waveform distortion, acoustic streaming, and radiation pressure, are also revealed by the LB simulation.
    • 基金项目: 国家自然科学基金(批准号:51071126,51371148)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51071126, 51371148).
    [1]

    Brandt E H 2001 Nature 413 474

    [2]

    Xie W J, Cao C D, L Y J, Hong Z Y, Wei B 2006 Appl. Phys. Lett. 89 214102

    [3]

    Weber J K R, Benmore C J, Tailor A N, Tumber S K, Neuefeind J, Cherry B, Yarger J L, Mou Q, Weber W, Byrn S R 2013 Chem. Phys. 424 89

    [4]

    Radnik J, Bentrup U, Leiterer J, Brckner A, Emmerling F 2011 Chem. Mater. 23 5425

    [5]

    Wolf S E, Leiterer J, Kappl M, Emmerling F, Tremel W 2008 J. Am. Chem. Soc. 130 12342

    [6]

    Lee S, Ohsaka K, Rednikov A, Sadhal S S 2006 Ann. N. Y. Acad. Sci. 1077 75

    [7]

    Tuckermann R, Bauerecker S, Cammenga H K 2005 Int. J. Thermophys. 26 1583

    [8]

    Saha A, Basu S, Suryanarayana C, Kumar R 2010 Int. J. Heat Mass Transfer 53 5663

    [9]

    Shao X P, Xie W J 2012 Acta Phys. Sin. 61 134302 (in Chinese) [邵学鹏, 解文军 2012 61 134302]

    [10]

    Brotton S J, Kaiser R I 2013 Rev. Sci. Instrum. 84 055114

    [11]

    Chainani E T, Ngo K T, Scheeline A 2013 Anal. Chem. 85 2500

    [12]

    Benmore C J, Weber J K R 2011 Phys. Rev. X 1 011004

    [13]

    Benmore C J, Weber J K R, Tailor A N, Cherry B R, Yarger J L, Mou Q S, Weber W, Neuefeind J, Byrn S R 2013 J. Pharm. Sci. 102 1290

    [14]

    Trinh E H, Robeyal J L 1994 Phys. Fluids 6 3567

    [15]

    Du R J, Xie W J 2011 Acta Phys. Sin. 60 114302 (in Chinese) [杜人君, 解文军 2011 60 114302]

    [16]

    Qian Z W 2009 Nonlinear Acoustics (Beijing: Science Press) p1 (in Chinese) [钱祖文 2009 非线性声学 (北京: 科学出版社) 第1页]

    [17]

    Aidun C K, Clausen J R 2010 Annu. Rev. Fluid Mech. 42 439

    [18]

    Chen S, Doolen G 1998 Annu. Rev. Fluid Mech. 30 329

    [19]

    Benzi R, Succi S, Vergassola M 1992 Phys. Rep. 222 145

    [20]

    Guo Z L, Zheng C G, Shi B C 2002 Chin. Phys. 11 366

    [21]

    Shi Z Y, Hu G H, Zhou Z W 2010 Acta Phys. Sin. 59 2595 (in Chinese) [石自媛, 胡国辉, 周哲玮 2010 59 2595]

    [22]

    Wu W, Sun D K, Dai T, Zhu M F 2012 Acta Phys. Sin. 61 150501 (in Chinese) [吴伟, 孙东科, 戴挺, 朱鸣芳 2012 61 150501]

    [23]

    Buick J M, Buckley C L, Greated C A, Gilbert J 2000 J. Phys. A: Math. Gen. 33 3917

    [24]

    Haydock D, Yeomans J M 2001 J. Phys. A: Math. Gen. 34 5201

    [25]

    Haydock D 2005 J. Phys. A: Math. Gen. 38 3265

    [26]

    Barrios G, Rechtman R 2008 J. Fluid Mech. 596 191

    [27]

    Halliday I, Hammond L A, Care C M, Good K, Stevens A 2001 Phys. Rev. E 64 011208

    [28]

    Mukherjee S, Abraham J 2007 Phys. Rev. E 75 026701

    [29]

    Li Q, He Y L, Tang G H, Tao W Q 2010 Phys. Rev. E 81 056707

    [30]

    Lallemand P, Luo L S 2000 Phys. Rev. E 61 6546

    [31]

    Landau L D, Lifshitz E M 1999 Fluid Mechanics (2nd Ed.) (Beijing: World Publishing Corporation) p45

    [32]

    Saenger R A, Hudson G E 1960 J. Acoust. Soc. Am. 32 961

    [33]

    Leung E, Lee C P, Jacobi N, Wang T G 1982 J. Acoust. Soc. Am. 72 615

    [34]

    Xie W J, Wei B 2004 Phys. Rev. E 70 046611

    [35]

    Xie W J, Wei B 2007 Chin. Phys. Lett. 24 135

  • [1]

    Brandt E H 2001 Nature 413 474

    [2]

    Xie W J, Cao C D, L Y J, Hong Z Y, Wei B 2006 Appl. Phys. Lett. 89 214102

    [3]

    Weber J K R, Benmore C J, Tailor A N, Tumber S K, Neuefeind J, Cherry B, Yarger J L, Mou Q, Weber W, Byrn S R 2013 Chem. Phys. 424 89

    [4]

    Radnik J, Bentrup U, Leiterer J, Brckner A, Emmerling F 2011 Chem. Mater. 23 5425

    [5]

    Wolf S E, Leiterer J, Kappl M, Emmerling F, Tremel W 2008 J. Am. Chem. Soc. 130 12342

    [6]

    Lee S, Ohsaka K, Rednikov A, Sadhal S S 2006 Ann. N. Y. Acad. Sci. 1077 75

    [7]

    Tuckermann R, Bauerecker S, Cammenga H K 2005 Int. J. Thermophys. 26 1583

    [8]

    Saha A, Basu S, Suryanarayana C, Kumar R 2010 Int. J. Heat Mass Transfer 53 5663

    [9]

    Shao X P, Xie W J 2012 Acta Phys. Sin. 61 134302 (in Chinese) [邵学鹏, 解文军 2012 61 134302]

    [10]

    Brotton S J, Kaiser R I 2013 Rev. Sci. Instrum. 84 055114

    [11]

    Chainani E T, Ngo K T, Scheeline A 2013 Anal. Chem. 85 2500

    [12]

    Benmore C J, Weber J K R 2011 Phys. Rev. X 1 011004

    [13]

    Benmore C J, Weber J K R, Tailor A N, Cherry B R, Yarger J L, Mou Q S, Weber W, Neuefeind J, Byrn S R 2013 J. Pharm. Sci. 102 1290

    [14]

    Trinh E H, Robeyal J L 1994 Phys. Fluids 6 3567

    [15]

    Du R J, Xie W J 2011 Acta Phys. Sin. 60 114302 (in Chinese) [杜人君, 解文军 2011 60 114302]

    [16]

    Qian Z W 2009 Nonlinear Acoustics (Beijing: Science Press) p1 (in Chinese) [钱祖文 2009 非线性声学 (北京: 科学出版社) 第1页]

    [17]

    Aidun C K, Clausen J R 2010 Annu. Rev. Fluid Mech. 42 439

    [18]

    Chen S, Doolen G 1998 Annu. Rev. Fluid Mech. 30 329

    [19]

    Benzi R, Succi S, Vergassola M 1992 Phys. Rep. 222 145

    [20]

    Guo Z L, Zheng C G, Shi B C 2002 Chin. Phys. 11 366

    [21]

    Shi Z Y, Hu G H, Zhou Z W 2010 Acta Phys. Sin. 59 2595 (in Chinese) [石自媛, 胡国辉, 周哲玮 2010 59 2595]

    [22]

    Wu W, Sun D K, Dai T, Zhu M F 2012 Acta Phys. Sin. 61 150501 (in Chinese) [吴伟, 孙东科, 戴挺, 朱鸣芳 2012 61 150501]

    [23]

    Buick J M, Buckley C L, Greated C A, Gilbert J 2000 J. Phys. A: Math. Gen. 33 3917

    [24]

    Haydock D, Yeomans J M 2001 J. Phys. A: Math. Gen. 34 5201

    [25]

    Haydock D 2005 J. Phys. A: Math. Gen. 38 3265

    [26]

    Barrios G, Rechtman R 2008 J. Fluid Mech. 596 191

    [27]

    Halliday I, Hammond L A, Care C M, Good K, Stevens A 2001 Phys. Rev. E 64 011208

    [28]

    Mukherjee S, Abraham J 2007 Phys. Rev. E 75 026701

    [29]

    Li Q, He Y L, Tang G H, Tao W Q 2010 Phys. Rev. E 81 056707

    [30]

    Lallemand P, Luo L S 2000 Phys. Rev. E 61 6546

    [31]

    Landau L D, Lifshitz E M 1999 Fluid Mechanics (2nd Ed.) (Beijing: World Publishing Corporation) p45

    [32]

    Saenger R A, Hudson G E 1960 J. Acoust. Soc. Am. 32 961

    [33]

    Leung E, Lee C P, Jacobi N, Wang T G 1982 J. Acoust. Soc. Am. 72 615

    [34]

    Xie W J, Wei B 2004 Phys. Rev. E 70 046611

    [35]

    Xie W J, Wei B 2007 Chin. Phys. Lett. 24 135

  • [1] 赖瑶瑶, 陈鑫梦, 柴振华, 施保昌. 基于格子Boltzmann方法的钉扎螺旋波反馈控制.  , 2024, 73(4): 040502. doi: 10.7498/aps.73.20231549
    [2] 贺华丹, 钟琦超, 解文军. 声悬浮条件下双水相液滴的蒸发与相分离.  , 2024, 73(3): 034304. doi: 10.7498/aps.73.20230963
    [3] 熊枫, 彭志敏, 丁艳军, 杜艳君. NO紫外宽带吸收光谱的非线性响应及实验.  , 2022, 71(20): 203302. doi: 10.7498/aps.71.20220975
    [4] 高广健, 邓明晰, 李明亮. 圆管结构中周向导波非线性效应的模式展开分析.  , 2015, 64(18): 184303. doi: 10.7498/aps.64.184303
    [5] 任晟, 张家忠, 张亚苗, 卫丁. 零质量射流激励下诱发液体相变及其格子Boltzmann方法模拟.  , 2014, 63(2): 024702. doi: 10.7498/aps.63.024702
    [6] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法.  , 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [7] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流.  , 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [8] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟.  , 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [9] 陈伟, 孟洲, 周会娟, 罗洪. 远程干涉型光纤传感系统的非线性相位噪声分析.  , 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [10] 邵学鹏, 解文军. 声悬浮条件下黏性液滴的扇谐振荡规律研究.  , 2012, 61(13): 134302. doi: 10.7498/aps.61.134302
    [11] 曾建邦, 李隆键, 廖全, 蒋方明. 池沸腾中气泡生长过程的格子Boltzmann方法模拟.  , 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [12] 鄢振麟, 解文军, 沈昌乐, 魏炳波. 声悬浮液滴的表面毛细波及八阶扇谐振荡.  , 2011, 60(6): 064302. doi: 10.7498/aps.60.064302
    [13] 杜人君, 解文军. 声悬浮条件下环己烷液滴的蒸发凝固.  , 2011, 60(11): 114302. doi: 10.7498/aps.60.114302
    [14] 曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明. 格子Boltzmann方法在相变过程中的应用.  , 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [15] 陈 亮, 梁昌洪, 党晓杰. 非线性左手材料中的二次谐波.  , 2007, 56(11): 6398-6402. doi: 10.7498/aps.56.6398
    [16] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟.  , 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [17] 祝 娅, 周 倩, 田 强. 非线性Kronig-Penney超晶格的二维实映射分析.  , 2005, 54(1): 343-347. doi: 10.7498/aps.54.343
    [18] 张 琳, 李恩普, 冯 伟, 洪振宇, 解文军, 马仰华. 声悬浮过程的激光全息干涉研究.  , 2005, 54(5): 2038-2042. doi: 10.7498/aps.54.2038
    [19] 徐 权, 田 强. 一维分子链中激子与声子的相互作用和呼吸子解 .  , 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
    [20] 李华兵, 黄乒花, 刘慕仁, 孔令江. 用格子Boltzmann方法模拟MKDV方程.  , 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
计量
  • 文章访问数:  6806
  • PDF下载量:  579
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-17
  • 修回日期:  2014-03-13
  • 刊出日期:  2014-08-05

/

返回文章
返回
Baidu
map