Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of bubble growth process in pool boilingusing lattice Boltzmann method

Jiang Fang-Ming Liao Quan Zeng Jian-Bang Li Long-Jian

Citation:

Simulation of bubble growth process in pool boilingusing lattice Boltzmann method

Jiang Fang-Ming, Liao Quan, Zeng Jian-Bang, Li Long-Jian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, a new single-component lattice Boltzmann model, which is based on exact difference method and extended with an energy transfer equation to model heat transfer, is proposed to describe liquid-vapor phase transition process. The wettability of the heated wall is modeled by an interaction force between solid wall and fluid. This new model is validated through the simulation of water phase transition process. It is found that the simulation results are in good agreement with the experimental data. The surface tension of water, which is obtained from simulation results at different temperatures, is closed to experimental data. These results are in agree ment with those obtained from Laplace law. In order to demonstrate the availability of this model for dealing with phase transition and two-phase problems, the bubble growth process on a heated surface is simulated in pool boiling. It is found that the bubble departure diameter is proportional to g-0.5 and the release frequency scales with g0.75, where g is the gravitational acceleration. These results are in good agreement with those obtained from the empirical relationship and reference results. Finally, simulation results show no relationship between the bubble departure diameter and the static contact angle, but the bubble release frequency increases exponentially with the latter.
    [1]

    Hepworth N J, Boyd J W R, Hammond J R M, Varley J 2003 Chem. Eng. Sci. 58 4071

    [2]

    Barbulovic-Nad I, Lucente M, Sun Y, Zhang M J, Wheeler A R, Bussmann M 2006 Crit. Rev. Biotech. 26 237

    [3]

    Bolognesi A, Mercogliano C, Yunnus S, Civardi M, Comoretto D, Turturro A 2005 Langmuir 21 3480

    [4]

    Bestion D, Anglart H, Caraghiaur D, Peteraud P, Smith B, Andreani M, Niceno B, Krepper E, Lucas E, Lucas D, Moretti F, Galassi M C, Macek J, Vyskocil L, Koncar B, Hazi G 2009 Sci. Tech. Nucl. Installa. 214512 1

    [5]

    Dhir V K 2006 J. Heat Transfer. 128 1

    [6]

    Chester A K 1977 J. Fluid Mech. 81 609

    [7]

    Fritz W 1935 Phys. Z. 36 379

    [8]

    Arlabosse P, Tadrist L, Tadrist H, Pantaloni J 2000 Trans. ASME 122 66

    [9]

    Warrier G R, Basu N, Dhir V K 2002 Int. J. Heat Mass Transfer 45 3947

    [10]

    Mukherjee A, Kandlikar S G 2007 Int. J. Heat Mass Transfer 50 127

    [11]

    Fuchs T, Kern J, Stephan P 2006 J. Heat Transfer 128 1257

    [12]

    Dhir V K 2001 AIChE J. 47 813

    [13]

    Mei R W, Chen W, Klausner J 1995 Int. J. Heat Mass Transfer 38 909

    [14]

    Son G, Ramanujapu N, Dhir V K 2002 J. Heat Transfer 124 51

    [15]

    Guo Z L, Zheng C G 2008 Theory and Application of Lattice Boltzmann Method (Beijing: Science Press) p76 (in Chinese) [郭照立、郑楚光 2008 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第76页]

    [16]

    Bruce J P, David R R 2000 Phys. Rev. E 61 5295

    [17]

    Tentner A, Chen H D, Zhang R Y 2006 Phys. A 362 98

    [18]

    Gonnella G, Lamura A, Sofonea V 2007 Phys. Rev. E 76 036703

    [19]

    Gabor H, Attila M 2009 Int. J. Heat Mass Transfer 52 1472

    [20]

    Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦、李隆键、廖 全、陈清华、崔文智、潘良明 2010 59 178]

    [21]

    Martys N S, Chen H D 1996 Phys. Rev. E 53 743

    [22]

    Xin M D 1987 Boiling Heat Transfer and Enhanced Boiling Heat Transfer (Chongqing: Chongqing Unversity Press) p55 (in Chinese) [辛明道 1987 沸腾传热及其强化 (重庆:重庆大学出版社) 第55页]

    [23]

    Zuber N 1963 Int. J. Heat Mass Transfer 6 53

    [24]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815

    [25]

    Zeng J B, Li L J, Liao Q, Cui W Z, Chen Q H, Pan L M 2009 Chin. Sci. Bull. 54 1

    [26]

    Kupershtokh A L 2004 in: Proceedings of the 5th International Electrostatique Workshop August30—31,2004 Poitiers-France 241

    [27]

    Zhang R Y, Chen H D 2003 Phys. Rev. E 67 1

    [28]

    PengY, Schaefer L 2006 Phys. Fluids 18 1

    [29]

    Qin R S 2007 J. Chem. Phys. 126 114506

    [30]

    Yang S M, Tao W Q 1998 Heat Transfer (Beijing: Higher Education Press) p218 (in Chinese) [杨世铭、陶文铨 1998 传热学(北京: 高等教育出版社) 第218页]

    [31]

    Shen W D, Jiang Z M, Tong J G 2001 Engineer Thermodynamics (Beijing: Higher Education Press) p413 (in Chinese) [沈维道、蒋智敏、童均耕 2001 工程热力学 (北京: 高等教育出版社)第413页]

    [32]

    Sukop M C, Or D 2005 Phys. Rev. E 71 046703

    [33]

    Peng Y 2005 Ph. D. Dissertation (Pittsburg: University of Pittsburg) p56

    [34]

    Haider S I, Webb R L 1997 Int. J. Heat Mass Transfer 40 3675

    [35]

    Buyevich Y A, Werbon B W 1996 Int. J. Heat Mass Transfer 39 2409

    [36]

    Yang C X, Wu Y T, Yuan X G, Ma C F 2000 Int. J. Heat Mass Transfer 43 203

    [37]

    Kim J, Kim M H 2006 Int. J. Multiphase Flow 32 1269

  • [1]

    Hepworth N J, Boyd J W R, Hammond J R M, Varley J 2003 Chem. Eng. Sci. 58 4071

    [2]

    Barbulovic-Nad I, Lucente M, Sun Y, Zhang M J, Wheeler A R, Bussmann M 2006 Crit. Rev. Biotech. 26 237

    [3]

    Bolognesi A, Mercogliano C, Yunnus S, Civardi M, Comoretto D, Turturro A 2005 Langmuir 21 3480

    [4]

    Bestion D, Anglart H, Caraghiaur D, Peteraud P, Smith B, Andreani M, Niceno B, Krepper E, Lucas E, Lucas D, Moretti F, Galassi M C, Macek J, Vyskocil L, Koncar B, Hazi G 2009 Sci. Tech. Nucl. Installa. 214512 1

    [5]

    Dhir V K 2006 J. Heat Transfer. 128 1

    [6]

    Chester A K 1977 J. Fluid Mech. 81 609

    [7]

    Fritz W 1935 Phys. Z. 36 379

    [8]

    Arlabosse P, Tadrist L, Tadrist H, Pantaloni J 2000 Trans. ASME 122 66

    [9]

    Warrier G R, Basu N, Dhir V K 2002 Int. J. Heat Mass Transfer 45 3947

    [10]

    Mukherjee A, Kandlikar S G 2007 Int. J. Heat Mass Transfer 50 127

    [11]

    Fuchs T, Kern J, Stephan P 2006 J. Heat Transfer 128 1257

    [12]

    Dhir V K 2001 AIChE J. 47 813

    [13]

    Mei R W, Chen W, Klausner J 1995 Int. J. Heat Mass Transfer 38 909

    [14]

    Son G, Ramanujapu N, Dhir V K 2002 J. Heat Transfer 124 51

    [15]

    Guo Z L, Zheng C G 2008 Theory and Application of Lattice Boltzmann Method (Beijing: Science Press) p76 (in Chinese) [郭照立、郑楚光 2008 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第76页]

    [16]

    Bruce J P, David R R 2000 Phys. Rev. E 61 5295

    [17]

    Tentner A, Chen H D, Zhang R Y 2006 Phys. A 362 98

    [18]

    Gonnella G, Lamura A, Sofonea V 2007 Phys. Rev. E 76 036703

    [19]

    Gabor H, Attila M 2009 Int. J. Heat Mass Transfer 52 1472

    [20]

    Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦、李隆键、廖 全、陈清华、崔文智、潘良明 2010 59 178]

    [21]

    Martys N S, Chen H D 1996 Phys. Rev. E 53 743

    [22]

    Xin M D 1987 Boiling Heat Transfer and Enhanced Boiling Heat Transfer (Chongqing: Chongqing Unversity Press) p55 (in Chinese) [辛明道 1987 沸腾传热及其强化 (重庆:重庆大学出版社) 第55页]

    [23]

    Zuber N 1963 Int. J. Heat Mass Transfer 6 53

    [24]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815

    [25]

    Zeng J B, Li L J, Liao Q, Cui W Z, Chen Q H, Pan L M 2009 Chin. Sci. Bull. 54 1

    [26]

    Kupershtokh A L 2004 in: Proceedings of the 5th International Electrostatique Workshop August30—31,2004 Poitiers-France 241

    [27]

    Zhang R Y, Chen H D 2003 Phys. Rev. E 67 1

    [28]

    PengY, Schaefer L 2006 Phys. Fluids 18 1

    [29]

    Qin R S 2007 J. Chem. Phys. 126 114506

    [30]

    Yang S M, Tao W Q 1998 Heat Transfer (Beijing: Higher Education Press) p218 (in Chinese) [杨世铭、陶文铨 1998 传热学(北京: 高等教育出版社) 第218页]

    [31]

    Shen W D, Jiang Z M, Tong J G 2001 Engineer Thermodynamics (Beijing: Higher Education Press) p413 (in Chinese) [沈维道、蒋智敏、童均耕 2001 工程热力学 (北京: 高等教育出版社)第413页]

    [32]

    Sukop M C, Or D 2005 Phys. Rev. E 71 046703

    [33]

    Peng Y 2005 Ph. D. Dissertation (Pittsburg: University of Pittsburg) p56

    [34]

    Haider S I, Webb R L 1997 Int. J. Heat Mass Transfer 40 3675

    [35]

    Buyevich Y A, Werbon B W 1996 Int. J. Heat Mass Transfer 39 2409

    [36]

    Yang C X, Wu Y T, Yuan X G, Ma C F 2000 Int. J. Heat Mass Transfer 43 203

    [37]

    Kim J, Kim M H 2006 Int. J. Multiphase Flow 32 1269

  • [1] Xu Xin-Meng, Lou Qin. Lattice Boltzmann method for studying dynamics of single rising bubble in shear-thickening power-law fluids. Acta Physica Sinica, 2024, 73(13): 134701. doi: 10.7498/aps.73.20240394
    [2] Zhang Sen, Lou Qin. A mesoscopic numerical method for enhanced pool boiling heat transfer on conical surfaces under action of electric field. Acta Physica Sinica, 2024, 73(2): 026401. doi: 10.7498/aps.73.20231141
    [3] Hu Jian, Zhang Sen, Lou Qin. Mesoscopic study on effect of electric field and heater characteristics on saturated pool boiling heat transfer. Acta Physica Sinica, 2023, 72(17): 176401. doi: 10.7498/aps.72.20230341
    [4] Liu Gao-Jie, Shao Zi-Yu, Lou Qin. A lattice Boltzmann study of miscible displacement containing dissolution reaction in porous medium. Acta Physica Sinica, 2022, 71(5): 054702. doi: 10.7498/aps.71.20211851
    [5] Lattice Boltzmann Simulation on Two Dimensional Vapour Bubble Ripening. Acta Physica Sinica, 2022, (): . doi: 10.7498/aps.71.20212183
    [6] Chen Xiao-Peng, Feng Jun-Peng, Hu Hai-Bao, Du Peng, Wang Ti-Kang. Lattice Boltzmann method based simulation of two dimensional bubble group ripening process. Acta Physica Sinica, 2022, 71(11): 110504. doi: 10.7498/aps.70.20212183
    [7] Cao Chun-Lei, He Xiao-Tian, Ma Xiao-Jing, Xu Jin-Liang. Enhanced pool boiling heat transfer on soft liquid metal surface. Acta Physica Sinica, 2021, 70(13): 134703. doi: 10.7498/aps.70.20202053
    [8] A lattice Boltzmann study on miscible displacements with dissolution in porous media. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211851
    [9] Zang Chen-Qiang, Lou Qin. Lattice Boltzmann simulation of immiscible displacement in the complex micro-channel. Acta Physica Sinica, 2017, 66(13): 134701. doi: 10.7498/aps.66.134701
    [10] Ye Xue-Min, Li Yong-Kang, Li Chun-Xi. Influence of equilibrium contact angle on spreading dynamics of a heated droplet on a horizontal plate. Acta Physica Sinica, 2016, 65(10): 104704. doi: 10.7498/aps.65.104704
    [11] Huang Hu, Hong Ning, Liang Hong, Shi Bao-Chang, Chai Zhen-Hua. Lattice Boltzmann simulation of the droplet impact onto liquid film. Acta Physica Sinica, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [12] Zhang Ting, Shi Bao-Chang, Chai Zhen-Hua. Lattice Boltzmann simulation of dissolution and precipitation in porous media. Acta Physica Sinica, 2015, 64(15): 154701. doi: 10.7498/aps.64.154701
    [13] Xie Wen-Jun, Teng Peng-Fei. Study of acoustic levitation by lattice Boltzmann method. Acta Physica Sinica, 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [14] Jing Wei-Xuan, Wang Bing, Niu Ling-Ling, Qi Han, Jiang Zhuang-De, Chen Lu-Jia, Zhou Fan. Relationships between synthesizing parameters, morphology, and contact angles of ZnO nanowire films. Acta Physica Sinica, 2013, 62(21): 218102. doi: 10.7498/aps.62.218102
    [15] Ge Song, Chen Min. A molecular dynamics simulation on the relationship between contact angle and solid-liquid interfacial thermal resistance. Acta Physica Sinica, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [16] Liu Qiu-Zu, Kou Zi-Ming, Han Zhen-Nan, Gao Gui-Jun. Dynamic process simulation of droplet spreading on solid surface by lattic Boltzmann method. Acta Physica Sinica, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [17] Zeng Jian-Bang, Li Long-Jian, Jiang Fang-Ming. Numerical investigation of bubble nucleation process using the lattice Boltzmann method. Acta Physica Sinica, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [18] Zeng Jian-Bang, Li Long-Jian, Liao Quan, Chen Qing-Hua, Cui Wen-Zhi, Pan Liang-Ming. Application of lattice Boltzmann method to phase transition process. Acta Physica Sinica, 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [19] Xiao Bo-Qi, Chen Ling-Xia, Jiang Guo-Ping, Rao Lian-Zhou, Wang Zong-Chi, Wei Mao-Jin. Mathematical analysis of pool boiling heat transfer. Acta Physica Sinica, 2009, 58(4): 2523-2527. doi: 10.7498/aps.58.2523
    [20] Cao Zhi-Jue, Xia Bo-Li, Zhang Yun. The possibility for realizing dropwise condensation with small contact angle. Acta Physica Sinica, 2003, 52(10): 2427-2431. doi: 10.7498/aps.52.2427
Metrics
  • Abstract views:  11150
  • PDF Downloads:  949
  • Cited By: 0
Publishing process
  • Received Date:  05 September 2010
  • Accepted Date:  05 October 2010
  • Published Online:  05 March 2011

/

返回文章
返回
Baidu
map