-
For the three kinds of composite materials, i.e., Cu(111)/HfO2(001), Cu(111)/HfO2(010) and Cu(111)/HfO2(100), the first-principles method based on the density functional theory is adopted to calculate their rates of mismatching of interface model, interface adhesion energies, the electric charge densities, the electron localization functions, and the charge density differences separately. The results indicate that the rate of mismatching of the Cu(111)/HfO2(010) interface model is lowest and its interface adhesion energy is higher than the others’, which means that the Cu(111)/HfO2(010) is most stable. From the analyses of charge densities and electron localization functions of the three interfaces, it can be found that only the Cu(111)/HfO2(010) interface is able to form the connective electronic channel along the vertical direction of the Cu electrode. This indicates that electrons possess the localizabilty and connectivity along the HfO2(010) direction, which corresponds to the switching-on direction of the resistive random access memory (RRAM) device. The charge density difference analysis reveals that the charge density distributions overlap, the electrons transfer mutually and bond at the interface of the Cu(111)/HfO2(010). In addition, based on the model of Cu (111)/HfO2 (010) interface, the formation energies of the interstitial Cu at different positions are also calculated. The results show that the closer to the interface the Cu atom, the more easily it migrates into HfO2. This indicates that the electrochemical reaction takes place more easily under the applied voltage, which results in the formation and rupture of Cu conductive filaments. All the above findings will provide a theoretical guidance for improving the performances of RRAM devices.
-
Keywords:
- resistive random access memory /
- composite material /
- interface /
- electronic channel
[1] Celano U, Chen Y Y, Wouters D J, Groeseneken G, Jurczak M, Vandervorst W 2013 Appl. Phys. Lett. 102 121602
[2] Lian W T, Long S B, L H B, Liu Q, Li Y T, Zhang S, Wang Y, Huo Z L, Dai Y H, Chen J N, Liu M 2011 Chin. Sci. Bull. 56 461
[3] Yalon E, Cohen S, Gavrilov A, Ritter D 2012 Nanotechnology 23 465201
[4] Robertson J, Gillen R 2013 Microelectron. Eng. 109 208
[5] Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W, Chen D M 2010 Chin. Phys. B 19 037304
[6] Gao B, Sun B, Zhang H W, Liu L F, Han R Q, Kang J F, Yu B 2009 IEEE Electron Dev. Lett. 30 1326
[7] Xu N, Liu L F, Sun X, Chen C, Wang Y, Han D D, Liu X Y, Han R Q, Kang J F, Yu B 2008 Semicond. Sci. Tech. 23 075019
[8] Park J W, Jung K, Yang M K, Lee J K 2007 2007 Proceedings of the Sixteenth IEEE International Symposium on the Applications of Ferroelectrics Nara-City, Japan, May 27–31, 2007 p46
[9] Li H X, Chen X P, Chen Q, Mao Q N, Xi J H, Ji Z G 2013 Acta Phys. Sin. 62 077202 (in Chinese) [李红霞, 陈雪平, 陈琪, 毛启楠, 席俊华, 季振国 2013 62 077202]
[10] Kim W G, Rhee S W 2010 Microelectron. Eng. 87 98
[11] Zhou X L, Feng J, Cao J C, Chen J C, Sun J L 2008 Chinese J. Nonferrous Metal. 18 2253 (in Chinese) [周晓龙, 冯晶, 曹建春, 陈敬超, 孙加林 2008 中国有色金属学报 18 2253
[12] Muňoz M C, Gallego S, Beltrán J I, Cerdá J 2006 Surf. Sci. Rep. 61 304
[13] Jiang D E, Carter E A 2005 Acta Mater. 53 4498
[14] Sasaki T, Matsunaga K, Ohta H, Hosono H, Yamamoto T, Ikuhara Y 2003 Sci. Technol. Adv. Mat. 4 575
[15] Dmitriev S V, Yoshikawa N, Tanaka Y, Kagawa Y 2006 Mater. Sci. Eng. A 418 36
[16] Dmitriev S V, Yoshikawa N, Kohyama M, Tanaka S, Yang R, Kagawa Y 2004 Acta Mater. 52 1959
[17] Hashibon A, Elsässer C, Rhle M 2007 Acta Mater. 55 1657
[18] Wang Y 2012 Ph. D. Dissertation (Gansu: Gansu University) (in Chinese) [王艳 2012 博士学位论文(甘肃: 兰州大学)]
[19] Yang Y, Gao P, Gaba S, Chang T, Pan X, Lu W 2012 Nature Commun. 3 732
[20] Sakamoto T, Lister K, Banno N, Hasegawa T, Terabe K, Aono M 2007 Appl. Phys. Lett. 91 092110
[21] Choi S J, Park G S, Kim K H, Cho S, Yang W Y, Li X S, Moon J H, Lee K J 2011 Adv. Mater. 23 3272
[22] Peng S, Zhuge F, Chen X, Zhu X, Hu B, Pan L, Chen B, Li R 2012 Appl. Phys. Lett. 100 072101
[23] Tousimi K, Valiev R, Yavari A R 2000 Mater. Phys. Mech. 2 63
[24] Wang J M, Zhou J, Liu J D, Xiong Z H 2006 Jiangxi Science 24 1 (in Chinese) [王建敏, 周珏, 刘继东, 熊志华 2006 江西科学 24 1]
[25] Lu Z S, Li S S, Chen C, Yang Z X 2013 Acta Phys. Sin. 62 117301 (in Chinese) [路战胜, 李莎莎, 陈晨, 杨宗献 2013 62 117301]
[26] Kresse G, Joubert J 1999 Phys. Rev. B 59 1758
[27] Xu B, Pan B C 2008 Acta Phys. Sin. 57 6526 (in Chinese) [徐波, 潘必才 2008 57 6526]
[28] Vanderbilt D 1990 Phys. Rev. B 41 7892
[29] Christensen M, Dudiy S, Wahnström G 2002 Phys. Rev. B 65 045408
[30] Prada S, Rosa M, Giordano L, Di Valentin C, Pacchioni G 2011 Phys. Rev. B 83 245314
[31] Tse K Y, Robertson J 2007 Phys. Rev. Lett. 99 086805
[32] Savin A, Jepsen O, Flad J, Andresen O K, Preuss H 1992 Angew. Chem. Int. Edit. 31 187
-
[1] Celano U, Chen Y Y, Wouters D J, Groeseneken G, Jurczak M, Vandervorst W 2013 Appl. Phys. Lett. 102 121602
[2] Lian W T, Long S B, L H B, Liu Q, Li Y T, Zhang S, Wang Y, Huo Z L, Dai Y H, Chen J N, Liu M 2011 Chin. Sci. Bull. 56 461
[3] Yalon E, Cohen S, Gavrilov A, Ritter D 2012 Nanotechnology 23 465201
[4] Robertson J, Gillen R 2013 Microelectron. Eng. 109 208
[5] Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W, Chen D M 2010 Chin. Phys. B 19 037304
[6] Gao B, Sun B, Zhang H W, Liu L F, Han R Q, Kang J F, Yu B 2009 IEEE Electron Dev. Lett. 30 1326
[7] Xu N, Liu L F, Sun X, Chen C, Wang Y, Han D D, Liu X Y, Han R Q, Kang J F, Yu B 2008 Semicond. Sci. Tech. 23 075019
[8] Park J W, Jung K, Yang M K, Lee J K 2007 2007 Proceedings of the Sixteenth IEEE International Symposium on the Applications of Ferroelectrics Nara-City, Japan, May 27–31, 2007 p46
[9] Li H X, Chen X P, Chen Q, Mao Q N, Xi J H, Ji Z G 2013 Acta Phys. Sin. 62 077202 (in Chinese) [李红霞, 陈雪平, 陈琪, 毛启楠, 席俊华, 季振国 2013 62 077202]
[10] Kim W G, Rhee S W 2010 Microelectron. Eng. 87 98
[11] Zhou X L, Feng J, Cao J C, Chen J C, Sun J L 2008 Chinese J. Nonferrous Metal. 18 2253 (in Chinese) [周晓龙, 冯晶, 曹建春, 陈敬超, 孙加林 2008 中国有色金属学报 18 2253
[12] Muňoz M C, Gallego S, Beltrán J I, Cerdá J 2006 Surf. Sci. Rep. 61 304
[13] Jiang D E, Carter E A 2005 Acta Mater. 53 4498
[14] Sasaki T, Matsunaga K, Ohta H, Hosono H, Yamamoto T, Ikuhara Y 2003 Sci. Technol. Adv. Mat. 4 575
[15] Dmitriev S V, Yoshikawa N, Tanaka Y, Kagawa Y 2006 Mater. Sci. Eng. A 418 36
[16] Dmitriev S V, Yoshikawa N, Kohyama M, Tanaka S, Yang R, Kagawa Y 2004 Acta Mater. 52 1959
[17] Hashibon A, Elsässer C, Rhle M 2007 Acta Mater. 55 1657
[18] Wang Y 2012 Ph. D. Dissertation (Gansu: Gansu University) (in Chinese) [王艳 2012 博士学位论文(甘肃: 兰州大学)]
[19] Yang Y, Gao P, Gaba S, Chang T, Pan X, Lu W 2012 Nature Commun. 3 732
[20] Sakamoto T, Lister K, Banno N, Hasegawa T, Terabe K, Aono M 2007 Appl. Phys. Lett. 91 092110
[21] Choi S J, Park G S, Kim K H, Cho S, Yang W Y, Li X S, Moon J H, Lee K J 2011 Adv. Mater. 23 3272
[22] Peng S, Zhuge F, Chen X, Zhu X, Hu B, Pan L, Chen B, Li R 2012 Appl. Phys. Lett. 100 072101
[23] Tousimi K, Valiev R, Yavari A R 2000 Mater. Phys. Mech. 2 63
[24] Wang J M, Zhou J, Liu J D, Xiong Z H 2006 Jiangxi Science 24 1 (in Chinese) [王建敏, 周珏, 刘继东, 熊志华 2006 江西科学 24 1]
[25] Lu Z S, Li S S, Chen C, Yang Z X 2013 Acta Phys. Sin. 62 117301 (in Chinese) [路战胜, 李莎莎, 陈晨, 杨宗献 2013 62 117301]
[26] Kresse G, Joubert J 1999 Phys. Rev. B 59 1758
[27] Xu B, Pan B C 2008 Acta Phys. Sin. 57 6526 (in Chinese) [徐波, 潘必才 2008 57 6526]
[28] Vanderbilt D 1990 Phys. Rev. B 41 7892
[29] Christensen M, Dudiy S, Wahnström G 2002 Phys. Rev. B 65 045408
[30] Prada S, Rosa M, Giordano L, Di Valentin C, Pacchioni G 2011 Phys. Rev. B 83 245314
[31] Tse K Y, Robertson J 2007 Phys. Rev. Lett. 99 086805
[32] Savin A, Jepsen O, Flad J, Andresen O K, Preuss H 1992 Angew. Chem. Int. Edit. 31 187
Catalog
Metrics
- Abstract views: 6191
- PDF Downloads: 994
- Cited By: 0