-
Dielectric capacitors have been widely used in crucial energy storage systems of electronic power systems because of their advantages such as fast charge discharge rates, long cycle lifetimes, low losses, and flexible and convenient processingc. However, the dielectric capacitors have lower energy storage densities than electrochemical energy storage devices, which makes them difficult to meet higher application requirements for electrical engineering at the present stage. Polyvinylidene fluoride (PVDF) based polymers show great potential in achieving improved energy storage properties, which is attributed to their high dielectric constants and high breakdown strengths. This work systematically reviews PVDF-based nanocomposites for energy storage applications. Dielectric constant, breakdown strength and charge discharge efficiency are three main parameters related to energy storage properties, which are proposed to discuss their mechanisms of action and optimization strategies. Finally, the key scientific problems of PVDF-based high energy storage composites are summarized and considered, and the future development trend of dielectric capacitors is also prospected.
-
Keywords:
- dielectric capacitors /
- polyvinylidene fluoride /
- composite materials /
- energy storage density
[1] Yu M P, Wang A J, Tian F Y, Song H Q, Wang Y S, Li C, Hong J D, Shi G Q 2015 Nanoscale 7 5292Google Scholar
[2] Yu M P, Li R, Tong Y, Li Y R, Li C, Hong J D, Shi G Q 2015 J. Mater. Chem. A 3 9609Google Scholar
[3] Wang X L, Shi G Q 2015 Energy Environ. Sci. 8 790Google Scholar
[4] Zhao Z H, Li M T, Zhang L P, Dai L M, Xia Z H 2015 Adv. Mater. 27 6834Google Scholar
[5] Sengodan S, Choi S, Jun A, Shin T H, Ju Y W, Jeong H Y, Shin J, T J, Irvine S, Kim G 2015 Nature Mater. 14 205Google Scholar
[6] Doan-Nguyen V V T, Zhang S, Trigg E B, Agarwal R, Li J, Su D, Winey K I, Murray C B 2015 ACS Nano 9 8108Google Scholar
[7] Ho J, Ramprasad R, Boggs S 2007 IEEE Trns. Dielectr. Electr. Insul. 14 1295Google Scholar
[8] Yin K, Zhou Z, Schuele D E, Wolak M, Zhu L, Baer E 2016 ACS Appl. Mater. Interfaces 8 13555Google Scholar
[9] Xu Y, Shi G, Duan X 2015 Acc. Chem. Res. 48 1666Google Scholar
[10] Wu Q, Xu Y, Yao Z, Liu A, Shi G Q 2010 ACS Nano 4 1963Google Scholar
[11] Yuan K, Xu Y, Uihlein J, Brunklaus G, Shi L, Heiderhoff R, Que M M, Forster M, Chasse T, Pichler T, Riedl T, Chen Y W, Scherf U 2015 Adv. Mater. 27 6714Google Scholar
[12] Starkweather Jr H W, Avakian P, Matheson Jr R R 1992 Macromolecules 25 6871Google Scholar
[13] Dang Z M, Yuan J K, Yao S H, Liao R J 2013 Adv. Mater. 25 6334Google Scholar
[14] Han K, Li Q, Chanthad C, Gadinski M R, Zhang G Z, Wang Q 2015 Adv. Funct. Mater. 25 3505Google Scholar
[15] Diao C L, Liu H X, Lou G H, Zheng H W, Yao Z H, Hao H, Cao M H 2019 J. Alloys Compd. 781 378Google Scholar
[16] Zhu L 2014 J. Phys. Chem. Lett. 5 3677Google Scholar
[17] Lim J Y, Park S Y, Kwak S, Kim H J, Seo Y 2016 Polymer 97 465Google Scholar
[18] Claude J, Lu Y Y, Li K, Wang Q 2008 Chem. Mater. 20 2078Google Scholar
[19] Guan F X, Wang J, Pan J L, Wang Q, Zhu L 2010 Macromolecules 43 6739Google Scholar
[20] Han R, Jin J, Khanchaitit P, Wang J K, Wang Q 2012 Polymer 53 1277Google Scholar
[21] Gadinski M R, Han K, Li Q, Zhang G Z, Reainthippayasakul W, Wang Q 2014 ACS Appl. Mater. Interfaces 6 18981Google Scholar
[22] Gadinski M R, Chanthad C, Han K, Dong L J, Wang Q 2014 Polym. Chem. 5 5957Google Scholar
[23] Guan F X, Pan J L, Wang J, Wang Q, Zhu L 2010 Macromolecules 43 384Google Scholar
[24] Chen X Z, Li X Y, Qian X S, Lu S G, Gu H M, Lin M, Shen Q D, Zhang Q M 2013 Polymer 54 2373Google Scholar
[25] Gadinski M R, Li Q, Zhang G Z, Zhang X S, Wang Q 2015 Macromolecules 48 2731Google Scholar
[26] Yang L Y, Tyburski B A, Dos Santos F D, Endoh M K, Koga T, Huang D, Wang Y J, Zhu L 2014 Macromolecules 47 8119Google Scholar
[27] Neese B, Chu B J, Lu S G, Zhang Q M 2008 Science 321 821Google Scholar
[28] Zhu L, Wang Q 2012 Macromolecules 45 2937Google Scholar
[29] Naegele D, Yoon D Y, Broadhurst M G 1978 Macromolecules 11 1297Google Scholar
[30] Lovinger A J 1983 Science 220 1115Google Scholar
[31] Huang X Y, Sun B, Zhu Y K, Li S T, Jiang P K 2019 Prog. Mater. Sci. 100 187Google Scholar
[32] Li H, Liu F, Fan B, Ai D, Peng Z, Wang Q 2018 Small Methods 2 1700399Google Scholar
[33] Li W P, Jiang L, Zhang X, Shen Y, Nan C W 2014 J. Mater. Chem. A 2 15803Google Scholar
[34] Wang J W, Shen Q D, Bao H M, Yang C Z, Zhang Q M 2005 Macromolecules 38 2247Google Scholar
[35] Zhang L, Liu Z, Lu X, Yang G, Zhang X Y, Cheng Z Y 2016 Nano Energy 26 550Google Scholar
[36] 赵学童, 廖瑞金, 李建英, 王飞鹏 2015 64 127701Google Scholar
Zhao X T, Liao R J, Li J Y, Wang F P 2015 Acta Phys. Sin. 64 127701Google Scholar
[37] 王娇, 刘少辉, 陈长青, 郝好山, 翟继卫 2020 69 217702Google Scholar
Wang J, Liu S H, Chen C Q, Hao W S, Zhai J W 2020 Acta Phys. Sin. 69 217702Google Scholar
[38] Zhang Y, Zhang C H, Feng Y, Zhang T D, Chen Q G, Chi Q G, Liu L Z, Li G F, Cui Y, Wang X, Dang Z M, Lei Q G 2019 Nano Energy 56 138Google Scholar
[39] Xia W M, Xu Z, Wen F, Zhang Z C 2012 Ceram Int. 38 1071Google Scholar
[40] Yu K, Niu Y J, Zhou Y C, Bai Y Y, Wang H 2013 J. Am. Ceram. Soc. 96 2519Google Scholar
[41] Luo B C, Wang X H, Wang Y P, Li L T 2014 J. Mater. Chem. A 2 510Google Scholar
[42] Feng Y, Li W L, Wang J P, Yin J H, Fei E D 2015 J. Mater. Chem. A 3 20313Google Scholar
[43] Cho S, Lee J S, Jang J 2015 ACS Appl. Mater. Interfaces 7 9668Google Scholar
[44] Zhang Y, Wang Y Q, Qi S J, Dunn S, Dong H S, Button T 2018 Appl. Phys. Lett. 112 202904Google Scholar
[45] Dang Z M, Lin Y H, Nan C W 2003 Adv. Mater. 15 1625Google Scholar
[46] He Z Z, Yu X, Yang J H, Zhang N, Huang T, Wang Y, Zhou Z W 2018 Compos. Pt. A-Appl. Sci. Manuf. 104 89Google Scholar
[47] Tu S, Jiang Q, Zhang X X, Alshareef H N 2018 ACS Nano 12 3369Google Scholar
[48] 王娇, 刘少辉, 周梦, 郝好山, 翟继卫 2020 69 218101Google Scholar
Wang J, Liu S H, Zhou M, Hao W S, Zhai J W 2020 Acta Phys. Sin. 69 218101Google Scholar
[49] Xie L Y, Huang X Y, Yang K, Li S T, Jiang P K 2014 J. Mater. Chem. A 2 5244Google Scholar
[50] Xie Y C, Jiang W R, Fu T, Liu J J, Zhang Z C, Wang S G 2018 ACS Appl. Mater. Interfaces 10 29038Google Scholar
[51] Zhang R R, Li L L, Long S J, Lou H Y, Wen F, Hong H, Shen Y C, Wang G F, Wu W 2021 J. Mater. Sci. Mater. Electron. 32 24248Google Scholar
[52] Niu Y J, Bai Y Y, Yu K, Wang Y F, Xiang F, Wang H 2015 ACS Appl. Mater. Interfaces 7 24168Google Scholar
[53] Peng W W, Zhou W Y, Li T, Zhou J J, Yao T, Wu H J, Zhao X T, Luo J, Liu J X, Zhang D L 2022 J. Mater. Sci. Mater. Electron. 33 14735Google Scholar
[54] Pan Z B, Zhai J W, Shen B 2017 J. Mater. Chem. A 5 15217
[55] Zhang X, Shen Y, Zhang Q H, Gu L, Hu J W, Lin Y H, Nan C W 2015 Adv. Mater. 27 819Google Scholar
[56] Zhang X, Shen Y, Xu B, Zhang Q H, Gu L, Jiang J Y, Ma J, Lin Y H, Nan C W 2016 Adv. Mater. 28 2055Google Scholar
[57] Mackey M, Hiltner A, Baer E, Flandia L, Wolak M A, Shirk J S 2009 J. Phys. D Appl. Phys. 42 175304Google Scholar
[58] Wolak M A, Pan M J, Wan A, Shirk J S, Mackey M, Hiltner A, Baer E, Flandin L 2008 Appl. Phys. Lett. 92 113301Google Scholar
[59] Feng Y F, Wu Q, Deng Q H, Peng C, Hu J B, Xu Z C 2019 J. Mater. Chem. C 7 6744Google Scholar
[60] Xie Y C, Wang J, Yu Y Y, Jiang W R, Zhang Z C 2018 Appl. Surf. Sci. 440 1150
[61] Luo H B, Pan X R, Yang J H, Qi X D, Wang Y 2022 Chin. J. Polym. Sci. 40 515Google Scholar
[62] Sun Q Z, Wang J P, Sun H N, He L Q, Zhang L X, Mao P, Zhang X X, Kang F, Wang Z P, Kang R R, Zhang L 2021 Compos. Pt. A-Appl. Sci. Manuf. 149 106546Google Scholar
[63] Zhang Q M, Bharti V, Zhao X 1998 Science 280 2101Google Scholar
[64] Cheng Z Y, Olson D, Xu H S, Xia F, Hundal J S, Zhang Q M, Bateman F B, Kavarnos G J, Ramotowski T 2002 Macromolecules 35 664Google Scholar
[65] Cheng Z Y, Zhang Q M, Bateman F B 2002 J. Appl. Phys. 92 6749Google Scholar
[66] Bharti V, Zhang Q M 2001 Phys. Rev. B 63 184103Google Scholar
[67] Li Z M, Arbatti M D, Cheng Z Y 2004 Macromolecules 37 79Google Scholar
[68] Wu S, Lin M, Lu S G, Zhu L, Zhang Q M 2011 Appl. Phys. Lett. 99 132901Google Scholar
[69] Zhang X, Shen Y, Shen Z H, Jiang J Y, Chen L Q, Nan C W 2016 ACS Appl. Mater. Interfaces 8 27236Google Scholar
[70] Zhu Y K, Jiang P K, Huang X Y 2019 Compos. Sci. Technol. 179 115Google Scholar
[71] Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J L, Wang Q 2018 Adv. Mater. 30 1805672Google Scholar
[72] Joyce D M, Ouchen F, Grote J G 2016 Adv. Energy Mater. 6 1600676Google Scholar
[73] Azizi A, Gadinski M R, Li Q, Alsaud M A, Wang J J, Wang Y, Wang B, Liu F H, Chen L Q, Alem N, Wang Q 2017 Adv. Mater. 29 1701864Google Scholar
[74] Thakur Y, Lean M H, Zhang Q M 2017 Appl. Phys. Lett. 110 122905Google Scholar
[75] Wang R, Xu H S, Cheng S, Liang J J, Gou B, Zhou J G, Fu J, Xie C Z, He J L, Li Q 2022 Energy Storage Mater. 49 339Google Scholar
[76] Nie R P, Li Y, Jia L C, Lei J, Huang H D, Li Z M 2019 J. Polym. Sci. Pt. B-Polym. Phys. 57 1043Google Scholar
[77] Huang H D, Chen X Y, Yin K Z, Treufeld I, Schuele D E, Ponting M, Langhe D, Baer E, Zhu L 2018 ACS Appl. Energ. Mater. 1 775Google Scholar
[78] Yang F, Zhao H, Zhang C Y, Zhang N, Zhu T G, Yin L, Bai J B 2022 J. Mater. Sci. 57 11824Google Scholar
[79] Chen C, Xie Y C, Wang J, Lan Y, Wei X Y, Zhang Z C 2021 Appl. Surf. Sci. 535 147737Google Scholar
[80] Li W Y, Song Z Q, Zhong J M, Qian J, Tan Z Y, Wu X Y, Chu H Y, Nie W, Ran X H 2019 J. Mater. Chem. C 7 10371Google Scholar
[81] Zhu Y K, Zhu Y J, Huang X Y, Chen J, Li Q, He J L, Jiang P K 2019 Adv. Energy Mater. 9 1903062Google Scholar
[82] Zhu Y K, Shen Z H, Li Y, Chai B, Chen J, Jiang P K, Huang X Y 2022 Nano-Micro Lett. 14 1Google Scholar
-
图 9 (a) PVDF/ P(VDF-TrFE-CFE)共混膜的储能密度与充放电效率[69]; (b)不同钛酸锶钡含量下单层膜与3层膜介电损耗; (c) TNF介电损耗降低示意图[76]
Figure 9. (a) Energy storage density and charge/discharge efficiency of PVDF/ P(VDF-TrFE-CFE) blended films[69]; (b) dielectric loss of monolayer and trilayer films with different barium strontium titanate content; (c) schematic diagram of TNF dielectric loss reduction [76]
-
[1] Yu M P, Wang A J, Tian F Y, Song H Q, Wang Y S, Li C, Hong J D, Shi G Q 2015 Nanoscale 7 5292Google Scholar
[2] Yu M P, Li R, Tong Y, Li Y R, Li C, Hong J D, Shi G Q 2015 J. Mater. Chem. A 3 9609Google Scholar
[3] Wang X L, Shi G Q 2015 Energy Environ. Sci. 8 790Google Scholar
[4] Zhao Z H, Li M T, Zhang L P, Dai L M, Xia Z H 2015 Adv. Mater. 27 6834Google Scholar
[5] Sengodan S, Choi S, Jun A, Shin T H, Ju Y W, Jeong H Y, Shin J, T J, Irvine S, Kim G 2015 Nature Mater. 14 205Google Scholar
[6] Doan-Nguyen V V T, Zhang S, Trigg E B, Agarwal R, Li J, Su D, Winey K I, Murray C B 2015 ACS Nano 9 8108Google Scholar
[7] Ho J, Ramprasad R, Boggs S 2007 IEEE Trns. Dielectr. Electr. Insul. 14 1295Google Scholar
[8] Yin K, Zhou Z, Schuele D E, Wolak M, Zhu L, Baer E 2016 ACS Appl. Mater. Interfaces 8 13555Google Scholar
[9] Xu Y, Shi G, Duan X 2015 Acc. Chem. Res. 48 1666Google Scholar
[10] Wu Q, Xu Y, Yao Z, Liu A, Shi G Q 2010 ACS Nano 4 1963Google Scholar
[11] Yuan K, Xu Y, Uihlein J, Brunklaus G, Shi L, Heiderhoff R, Que M M, Forster M, Chasse T, Pichler T, Riedl T, Chen Y W, Scherf U 2015 Adv. Mater. 27 6714Google Scholar
[12] Starkweather Jr H W, Avakian P, Matheson Jr R R 1992 Macromolecules 25 6871Google Scholar
[13] Dang Z M, Yuan J K, Yao S H, Liao R J 2013 Adv. Mater. 25 6334Google Scholar
[14] Han K, Li Q, Chanthad C, Gadinski M R, Zhang G Z, Wang Q 2015 Adv. Funct. Mater. 25 3505Google Scholar
[15] Diao C L, Liu H X, Lou G H, Zheng H W, Yao Z H, Hao H, Cao M H 2019 J. Alloys Compd. 781 378Google Scholar
[16] Zhu L 2014 J. Phys. Chem. Lett. 5 3677Google Scholar
[17] Lim J Y, Park S Y, Kwak S, Kim H J, Seo Y 2016 Polymer 97 465Google Scholar
[18] Claude J, Lu Y Y, Li K, Wang Q 2008 Chem. Mater. 20 2078Google Scholar
[19] Guan F X, Wang J, Pan J L, Wang Q, Zhu L 2010 Macromolecules 43 6739Google Scholar
[20] Han R, Jin J, Khanchaitit P, Wang J K, Wang Q 2012 Polymer 53 1277Google Scholar
[21] Gadinski M R, Han K, Li Q, Zhang G Z, Reainthippayasakul W, Wang Q 2014 ACS Appl. Mater. Interfaces 6 18981Google Scholar
[22] Gadinski M R, Chanthad C, Han K, Dong L J, Wang Q 2014 Polym. Chem. 5 5957Google Scholar
[23] Guan F X, Pan J L, Wang J, Wang Q, Zhu L 2010 Macromolecules 43 384Google Scholar
[24] Chen X Z, Li X Y, Qian X S, Lu S G, Gu H M, Lin M, Shen Q D, Zhang Q M 2013 Polymer 54 2373Google Scholar
[25] Gadinski M R, Li Q, Zhang G Z, Zhang X S, Wang Q 2015 Macromolecules 48 2731Google Scholar
[26] Yang L Y, Tyburski B A, Dos Santos F D, Endoh M K, Koga T, Huang D, Wang Y J, Zhu L 2014 Macromolecules 47 8119Google Scholar
[27] Neese B, Chu B J, Lu S G, Zhang Q M 2008 Science 321 821Google Scholar
[28] Zhu L, Wang Q 2012 Macromolecules 45 2937Google Scholar
[29] Naegele D, Yoon D Y, Broadhurst M G 1978 Macromolecules 11 1297Google Scholar
[30] Lovinger A J 1983 Science 220 1115Google Scholar
[31] Huang X Y, Sun B, Zhu Y K, Li S T, Jiang P K 2019 Prog. Mater. Sci. 100 187Google Scholar
[32] Li H, Liu F, Fan B, Ai D, Peng Z, Wang Q 2018 Small Methods 2 1700399Google Scholar
[33] Li W P, Jiang L, Zhang X, Shen Y, Nan C W 2014 J. Mater. Chem. A 2 15803Google Scholar
[34] Wang J W, Shen Q D, Bao H M, Yang C Z, Zhang Q M 2005 Macromolecules 38 2247Google Scholar
[35] Zhang L, Liu Z, Lu X, Yang G, Zhang X Y, Cheng Z Y 2016 Nano Energy 26 550Google Scholar
[36] 赵学童, 廖瑞金, 李建英, 王飞鹏 2015 64 127701Google Scholar
Zhao X T, Liao R J, Li J Y, Wang F P 2015 Acta Phys. Sin. 64 127701Google Scholar
[37] 王娇, 刘少辉, 陈长青, 郝好山, 翟继卫 2020 69 217702Google Scholar
Wang J, Liu S H, Chen C Q, Hao W S, Zhai J W 2020 Acta Phys. Sin. 69 217702Google Scholar
[38] Zhang Y, Zhang C H, Feng Y, Zhang T D, Chen Q G, Chi Q G, Liu L Z, Li G F, Cui Y, Wang X, Dang Z M, Lei Q G 2019 Nano Energy 56 138Google Scholar
[39] Xia W M, Xu Z, Wen F, Zhang Z C 2012 Ceram Int. 38 1071Google Scholar
[40] Yu K, Niu Y J, Zhou Y C, Bai Y Y, Wang H 2013 J. Am. Ceram. Soc. 96 2519Google Scholar
[41] Luo B C, Wang X H, Wang Y P, Li L T 2014 J. Mater. Chem. A 2 510Google Scholar
[42] Feng Y, Li W L, Wang J P, Yin J H, Fei E D 2015 J. Mater. Chem. A 3 20313Google Scholar
[43] Cho S, Lee J S, Jang J 2015 ACS Appl. Mater. Interfaces 7 9668Google Scholar
[44] Zhang Y, Wang Y Q, Qi S J, Dunn S, Dong H S, Button T 2018 Appl. Phys. Lett. 112 202904Google Scholar
[45] Dang Z M, Lin Y H, Nan C W 2003 Adv. Mater. 15 1625Google Scholar
[46] He Z Z, Yu X, Yang J H, Zhang N, Huang T, Wang Y, Zhou Z W 2018 Compos. Pt. A-Appl. Sci. Manuf. 104 89Google Scholar
[47] Tu S, Jiang Q, Zhang X X, Alshareef H N 2018 ACS Nano 12 3369Google Scholar
[48] 王娇, 刘少辉, 周梦, 郝好山, 翟继卫 2020 69 218101Google Scholar
Wang J, Liu S H, Zhou M, Hao W S, Zhai J W 2020 Acta Phys. Sin. 69 218101Google Scholar
[49] Xie L Y, Huang X Y, Yang K, Li S T, Jiang P K 2014 J. Mater. Chem. A 2 5244Google Scholar
[50] Xie Y C, Jiang W R, Fu T, Liu J J, Zhang Z C, Wang S G 2018 ACS Appl. Mater. Interfaces 10 29038Google Scholar
[51] Zhang R R, Li L L, Long S J, Lou H Y, Wen F, Hong H, Shen Y C, Wang G F, Wu W 2021 J. Mater. Sci. Mater. Electron. 32 24248Google Scholar
[52] Niu Y J, Bai Y Y, Yu K, Wang Y F, Xiang F, Wang H 2015 ACS Appl. Mater. Interfaces 7 24168Google Scholar
[53] Peng W W, Zhou W Y, Li T, Zhou J J, Yao T, Wu H J, Zhao X T, Luo J, Liu J X, Zhang D L 2022 J. Mater. Sci. Mater. Electron. 33 14735Google Scholar
[54] Pan Z B, Zhai J W, Shen B 2017 J. Mater. Chem. A 5 15217
[55] Zhang X, Shen Y, Zhang Q H, Gu L, Hu J W, Lin Y H, Nan C W 2015 Adv. Mater. 27 819Google Scholar
[56] Zhang X, Shen Y, Xu B, Zhang Q H, Gu L, Jiang J Y, Ma J, Lin Y H, Nan C W 2016 Adv. Mater. 28 2055Google Scholar
[57] Mackey M, Hiltner A, Baer E, Flandia L, Wolak M A, Shirk J S 2009 J. Phys. D Appl. Phys. 42 175304Google Scholar
[58] Wolak M A, Pan M J, Wan A, Shirk J S, Mackey M, Hiltner A, Baer E, Flandin L 2008 Appl. Phys. Lett. 92 113301Google Scholar
[59] Feng Y F, Wu Q, Deng Q H, Peng C, Hu J B, Xu Z C 2019 J. Mater. Chem. C 7 6744Google Scholar
[60] Xie Y C, Wang J, Yu Y Y, Jiang W R, Zhang Z C 2018 Appl. Surf. Sci. 440 1150
[61] Luo H B, Pan X R, Yang J H, Qi X D, Wang Y 2022 Chin. J. Polym. Sci. 40 515Google Scholar
[62] Sun Q Z, Wang J P, Sun H N, He L Q, Zhang L X, Mao P, Zhang X X, Kang F, Wang Z P, Kang R R, Zhang L 2021 Compos. Pt. A-Appl. Sci. Manuf. 149 106546Google Scholar
[63] Zhang Q M, Bharti V, Zhao X 1998 Science 280 2101Google Scholar
[64] Cheng Z Y, Olson D, Xu H S, Xia F, Hundal J S, Zhang Q M, Bateman F B, Kavarnos G J, Ramotowski T 2002 Macromolecules 35 664Google Scholar
[65] Cheng Z Y, Zhang Q M, Bateman F B 2002 J. Appl. Phys. 92 6749Google Scholar
[66] Bharti V, Zhang Q M 2001 Phys. Rev. B 63 184103Google Scholar
[67] Li Z M, Arbatti M D, Cheng Z Y 2004 Macromolecules 37 79Google Scholar
[68] Wu S, Lin M, Lu S G, Zhu L, Zhang Q M 2011 Appl. Phys. Lett. 99 132901Google Scholar
[69] Zhang X, Shen Y, Shen Z H, Jiang J Y, Chen L Q, Nan C W 2016 ACS Appl. Mater. Interfaces 8 27236Google Scholar
[70] Zhu Y K, Jiang P K, Huang X Y 2019 Compos. Sci. Technol. 179 115Google Scholar
[71] Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J L, Wang Q 2018 Adv. Mater. 30 1805672Google Scholar
[72] Joyce D M, Ouchen F, Grote J G 2016 Adv. Energy Mater. 6 1600676Google Scholar
[73] Azizi A, Gadinski M R, Li Q, Alsaud M A, Wang J J, Wang Y, Wang B, Liu F H, Chen L Q, Alem N, Wang Q 2017 Adv. Mater. 29 1701864Google Scholar
[74] Thakur Y, Lean M H, Zhang Q M 2017 Appl. Phys. Lett. 110 122905Google Scholar
[75] Wang R, Xu H S, Cheng S, Liang J J, Gou B, Zhou J G, Fu J, Xie C Z, He J L, Li Q 2022 Energy Storage Mater. 49 339Google Scholar
[76] Nie R P, Li Y, Jia L C, Lei J, Huang H D, Li Z M 2019 J. Polym. Sci. Pt. B-Polym. Phys. 57 1043Google Scholar
[77] Huang H D, Chen X Y, Yin K Z, Treufeld I, Schuele D E, Ponting M, Langhe D, Baer E, Zhu L 2018 ACS Appl. Energ. Mater. 1 775Google Scholar
[78] Yang F, Zhao H, Zhang C Y, Zhang N, Zhu T G, Yin L, Bai J B 2022 J. Mater. Sci. 57 11824Google Scholar
[79] Chen C, Xie Y C, Wang J, Lan Y, Wei X Y, Zhang Z C 2021 Appl. Surf. Sci. 535 147737Google Scholar
[80] Li W Y, Song Z Q, Zhong J M, Qian J, Tan Z Y, Wu X Y, Chu H Y, Nie W, Ran X H 2019 J. Mater. Chem. C 7 10371Google Scholar
[81] Zhu Y K, Zhu Y J, Huang X Y, Chen J, Li Q, He J L, Jiang P K 2019 Adv. Energy Mater. 9 1903062Google Scholar
[82] Zhu Y K, Shen Z H, Li Y, Chai B, Chen J, Jiang P K, Huang X Y 2022 Nano-Micro Lett. 14 1Google Scholar
Catalog
Metrics
- Abstract views: 7104
- PDF Downloads: 251
- Cited By: 0