-
The origin of the resistance switching behavior in HfO2 is explained in terms of filament formation/rupture under an applied voltage. In order to investigate the position and process of conductive filament in resistive switching memory, the resistive switching and chemical structure of Ti/HfO2/Pt memory device are studied. Through current-voltage measurement, typical resistive switching behavior is observed in Ti/HfO2/Pt device cells; through detecting Hf 4f with different depths by using X-ray photoelectron spectroscopy. It is observed that the Hf4+ decreases monotonically with depth increasing towards HfO2/Pt interface in low resistance state, while a fluctuation distribution of Hf4+ is shown in high resistance state and in the pristine Ti/HfO2/Pt device. The concentration of Hf4+ in high resistance state is higher than that in low resistance state, which is confirmed by measuring the electron energy loss spectrum. Additionally, the O 1s spectrum shows a similar result consistent with the Hf 4f one. The above result is explained by the existence of locally accumulated oxygen vacancies in the oxide bulk layer in high resistance state and pristine states. It is proposed that the oxygen vacancy clusters dominantly determine the resistivity by the connecting/rupture between the neighbor cluster sites in the bulk. The cluster defects are the preexisting structural distortion/injure by charge trapping defects due to the fixed charge which could confine the nucleation of oxygen vacancies and bigger distortion could be enhanced or recovered via the transportation of oxygen vacancies under the external voltage. Oxygen vacancies are driven away from the clusters under SET electrical stimulus, and then recover back to original cluster sites under RESET process.#br#The previous presumption of the ideal evenly-distributed state for oxygen vacancies in the bulk of resistance random access memories (RRAMs) device leads to an issue about where the filaments occur/form first since the oxygen vacancy defects show uniform distribution in the active oxide bulk layer. Since the conductive filament is easily formed in the cluster region of oxygen vacancies, this study could provide a deep understanding of the formation of conductive filament in RRAMs device.
-
Keywords:
- hafnium oxide /
- oxygen vacancy /
- conductive filament /
- resistive switching memory
[1] Sawa A 2008 Mater. Today 11 28
[2] Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632
[3] Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301 (in Chinese) [刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳 2014 63 187301]
[4] Shang D S, Sun J R, Shen B G 2013 Chin. Phys. B 22 067202
[5] Zhang T, Bai Y, Jia C H, Zhang W F 2012 Chin. Phys. B 21 107304
[6] Zhang T, Yin J, Zhao G F, Zhang W F, Xia Y D, Liu Z G 2014 Chin. Phys. B 23 087304
[7] Jiang R, Wu Z, Du X, Han Z, Sun W 2015 Appl. Phys. Lett. 107 013502
[8] Dong Z K, Duan S K, Hu X F, Wang L D 2014 Acta Phys. Sin. 63 128502 (in Chinese) [董哲康, 段书凯, 胡小方, 王丽丹 2014 63 128502]
[9] Li Y T, Long S B, L H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S, Liu M 2011 Chin. Phys. B 20 017305
[10] Jiang R, Li Z 2008 Appl. Phys. Lett. 92 012919
[11] Chen R, Zhou L W, Wang J Y, Chen C J, Shao X L, Jiang H, Zhang K L, L L R, Zhao J S 2014 Acta Phys. Sin. 63 067202 (in Chinese) [陈然, 周立伟, 王建云, 陈长军, 邵兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石 2014 63 067202]
[12] Chen Y N, Xu Z, Zhao S L, Yin F F, Zhang C W, Jiao B Y, Dong Y H 2011 Chin. Phys. B 20 127303
[13] Jiang R, Xie E, Wang Z 2007 J. Mater. Sci. 42 7343
[14] Miao F, Strachan J P, Yang J J, Zhang M X, Goldfarb I, Torrezan A C, Eschbach P, Kelley R D, Medeiros-Ribeiro G, Williams R S 2011 Adv. Mater. 47 5633
[15] Kim S, Lee D, Park J, Jung S, Lee W, Shin J, Woo J, Choi G, Hwang C 2012 Nanotechnology 32 325702
[16] Jiang R, Xie E, Chen Z, Zhang Z 2006 Appl. Surf. Sci. 253 2421
[17] Liu Q, Sun J, Lv H B, Long S, Yin K B, Wan N, Li Y T, Sun L, Liu M 2012 Adv. Mater. 24 1844
[18] Lin Y S, Zeng F, Tang S G, Liu H Y, Chen C, Gao S, Wang Y G, Pan F 2013 J. Appl. Phys. 113 064510
[19] Jiang R, Xie E, Wang Z 2006 Appl. Phys. Lett. 89 142907
[20] Morant C, Galan L, Sanz J M 1990 Surf. Interface Anal. 112 304
[21] Muller D A, Nakagawa N, Ohtomo A, Grazul J L, Hwang H Y 2004 Nature 430 657
[22] Leisegang T, Stocker H, Levin A, Weibach T, Zschornak M, Gutmann E, Rickers K, Gemming S, Meyer D 2009 Phys. Rev. Lett. 102 087601
[23] Jiang W, Noman M, Lu Y M, Bain J A, Salvador P A, Skowronski M 2011 J. Appl. Phys. 110 034509
[24] Park C, Seo Y, Jung J, Kim D W 2008 J. Appl. Phys. 103 054106
[25] Chen Y S, Chen B, Gao B, Chen L P, Lian G L, Liu L F, Wang Y, Liu X Y, Kang J F 2011 Appl. Phys. Lett. 99 072113
-
[1] Sawa A 2008 Mater. Today 11 28
[2] Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632
[3] Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301 (in Chinese) [刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳 2014 63 187301]
[4] Shang D S, Sun J R, Shen B G 2013 Chin. Phys. B 22 067202
[5] Zhang T, Bai Y, Jia C H, Zhang W F 2012 Chin. Phys. B 21 107304
[6] Zhang T, Yin J, Zhao G F, Zhang W F, Xia Y D, Liu Z G 2014 Chin. Phys. B 23 087304
[7] Jiang R, Wu Z, Du X, Han Z, Sun W 2015 Appl. Phys. Lett. 107 013502
[8] Dong Z K, Duan S K, Hu X F, Wang L D 2014 Acta Phys. Sin. 63 128502 (in Chinese) [董哲康, 段书凯, 胡小方, 王丽丹 2014 63 128502]
[9] Li Y T, Long S B, L H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S, Liu M 2011 Chin. Phys. B 20 017305
[10] Jiang R, Li Z 2008 Appl. Phys. Lett. 92 012919
[11] Chen R, Zhou L W, Wang J Y, Chen C J, Shao X L, Jiang H, Zhang K L, L L R, Zhao J S 2014 Acta Phys. Sin. 63 067202 (in Chinese) [陈然, 周立伟, 王建云, 陈长军, 邵兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石 2014 63 067202]
[12] Chen Y N, Xu Z, Zhao S L, Yin F F, Zhang C W, Jiao B Y, Dong Y H 2011 Chin. Phys. B 20 127303
[13] Jiang R, Xie E, Wang Z 2007 J. Mater. Sci. 42 7343
[14] Miao F, Strachan J P, Yang J J, Zhang M X, Goldfarb I, Torrezan A C, Eschbach P, Kelley R D, Medeiros-Ribeiro G, Williams R S 2011 Adv. Mater. 47 5633
[15] Kim S, Lee D, Park J, Jung S, Lee W, Shin J, Woo J, Choi G, Hwang C 2012 Nanotechnology 32 325702
[16] Jiang R, Xie E, Chen Z, Zhang Z 2006 Appl. Surf. Sci. 253 2421
[17] Liu Q, Sun J, Lv H B, Long S, Yin K B, Wan N, Li Y T, Sun L, Liu M 2012 Adv. Mater. 24 1844
[18] Lin Y S, Zeng F, Tang S G, Liu H Y, Chen C, Gao S, Wang Y G, Pan F 2013 J. Appl. Phys. 113 064510
[19] Jiang R, Xie E, Wang Z 2006 Appl. Phys. Lett. 89 142907
[20] Morant C, Galan L, Sanz J M 1990 Surf. Interface Anal. 112 304
[21] Muller D A, Nakagawa N, Ohtomo A, Grazul J L, Hwang H Y 2004 Nature 430 657
[22] Leisegang T, Stocker H, Levin A, Weibach T, Zschornak M, Gutmann E, Rickers K, Gemming S, Meyer D 2009 Phys. Rev. Lett. 102 087601
[23] Jiang W, Noman M, Lu Y M, Bain J A, Salvador P A, Skowronski M 2011 J. Appl. Phys. 110 034509
[24] Park C, Seo Y, Jung J, Kim D W 2008 J. Appl. Phys. 103 054106
[25] Chen Y S, Chen B, Gao B, Chen L P, Lian G L, Liu L F, Wang Y, Liu X Y, Kang J F 2011 Appl. Phys. Lett. 99 072113
Catalog
Metrics
- Abstract views: 6240
- PDF Downloads: 266
- Cited By: 0