Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cluster distribution for oxygen vacancy in Ti/HfO2/Pt resistive switching memory device

Jiang Ran Du Xiang-Hao Han Zu-Yin Sun Wei-Deng

Citation:

Cluster distribution for oxygen vacancy in Ti/HfO2/Pt resistive switching memory device

Jiang Ran, Du Xiang-Hao, Han Zu-Yin, Sun Wei-Deng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The origin of the resistance switching behavior in HfO2 is explained in terms of filament formation/rupture under an applied voltage. In order to investigate the position and process of conductive filament in resistive switching memory, the resistive switching and chemical structure of Ti/HfO2/Pt memory device are studied. Through current-voltage measurement, typical resistive switching behavior is observed in Ti/HfO2/Pt device cells; through detecting Hf 4f with different depths by using X-ray photoelectron spectroscopy. It is observed that the Hf4+ decreases monotonically with depth increasing towards HfO2/Pt interface in low resistance state, while a fluctuation distribution of Hf4+ is shown in high resistance state and in the pristine Ti/HfO2/Pt device. The concentration of Hf4+ in high resistance state is higher than that in low resistance state, which is confirmed by measuring the electron energy loss spectrum. Additionally, the O 1s spectrum shows a similar result consistent with the Hf 4f one. The above result is explained by the existence of locally accumulated oxygen vacancies in the oxide bulk layer in high resistance state and pristine states. It is proposed that the oxygen vacancy clusters dominantly determine the resistivity by the connecting/rupture between the neighbor cluster sites in the bulk. The cluster defects are the preexisting structural distortion/injure by charge trapping defects due to the fixed charge which could confine the nucleation of oxygen vacancies and bigger distortion could be enhanced or recovered via the transportation of oxygen vacancies under the external voltage. Oxygen vacancies are driven away from the clusters under SET electrical stimulus, and then recover back to original cluster sites under RESET process.#br#The previous presumption of the ideal evenly-distributed state for oxygen vacancies in the bulk of resistance random access memories (RRAMs) device leads to an issue about where the filaments occur/form first since the oxygen vacancy defects show uniform distribution in the active oxide bulk layer. Since the conductive filament is easily formed in the cluster region of oxygen vacancies, this study could provide a deep understanding of the formation of conductive filament in RRAMs device.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11374182), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FQ012), and the Jinan Independent Innovation Projects of Universities, China (Grant No. 201303019).
    [1]

    Sawa A 2008 Mater. Today 11 28

    [2]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [3]

    Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301 (in Chinese) [刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳 2014 63 187301]

    [4]

    Shang D S, Sun J R, Shen B G 2013 Chin. Phys. B 22 067202

    [5]

    Zhang T, Bai Y, Jia C H, Zhang W F 2012 Chin. Phys. B 21 107304

    [6]

    Zhang T, Yin J, Zhao G F, Zhang W F, Xia Y D, Liu Z G 2014 Chin. Phys. B 23 087304

    [7]

    Jiang R, Wu Z, Du X, Han Z, Sun W 2015 Appl. Phys. Lett. 107 013502

    [8]

    Dong Z K, Duan S K, Hu X F, Wang L D 2014 Acta Phys. Sin. 63 128502 (in Chinese) [董哲康, 段书凯, 胡小方, 王丽丹 2014 63 128502]

    [9]

    Li Y T, Long S B, L H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S, Liu M 2011 Chin. Phys. B 20 017305

    [10]

    Jiang R, Li Z 2008 Appl. Phys. Lett. 92 012919

    [11]

    Chen R, Zhou L W, Wang J Y, Chen C J, Shao X L, Jiang H, Zhang K L, L L R, Zhao J S 2014 Acta Phys. Sin. 63 067202 (in Chinese) [陈然, 周立伟, 王建云, 陈长军, 邵兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石 2014 63 067202]

    [12]

    Chen Y N, Xu Z, Zhao S L, Yin F F, Zhang C W, Jiao B Y, Dong Y H 2011 Chin. Phys. B 20 127303

    [13]

    Jiang R, Xie E, Wang Z 2007 J. Mater. Sci. 42 7343

    [14]

    Miao F, Strachan J P, Yang J J, Zhang M X, Goldfarb I, Torrezan A C, Eschbach P, Kelley R D, Medeiros-Ribeiro G, Williams R S 2011 Adv. Mater. 47 5633

    [15]

    Kim S, Lee D, Park J, Jung S, Lee W, Shin J, Woo J, Choi G, Hwang C 2012 Nanotechnology 32 325702

    [16]

    Jiang R, Xie E, Chen Z, Zhang Z 2006 Appl. Surf. Sci. 253 2421

    [17]

    Liu Q, Sun J, Lv H B, Long S, Yin K B, Wan N, Li Y T, Sun L, Liu M 2012 Adv. Mater. 24 1844

    [18]

    Lin Y S, Zeng F, Tang S G, Liu H Y, Chen C, Gao S, Wang Y G, Pan F 2013 J. Appl. Phys. 113 064510

    [19]

    Jiang R, Xie E, Wang Z 2006 Appl. Phys. Lett. 89 142907

    [20]

    Morant C, Galan L, Sanz J M 1990 Surf. Interface Anal. 112 304

    [21]

    Muller D A, Nakagawa N, Ohtomo A, Grazul J L, Hwang H Y 2004 Nature 430 657

    [22]

    Leisegang T, Stocker H, Levin A, Weibach T, Zschornak M, Gutmann E, Rickers K, Gemming S, Meyer D 2009 Phys. Rev. Lett. 102 087601

    [23]

    Jiang W, Noman M, Lu Y M, Bain J A, Salvador P A, Skowronski M 2011 J. Appl. Phys. 110 034509

    [24]

    Park C, Seo Y, Jung J, Kim D W 2008 J. Appl. Phys. 103 054106

    [25]

    Chen Y S, Chen B, Gao B, Chen L P, Lian G L, Liu L F, Wang Y, Liu X Y, Kang J F 2011 Appl. Phys. Lett. 99 072113

  • [1]

    Sawa A 2008 Mater. Today 11 28

    [2]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [3]

    Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301 (in Chinese) [刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳 2014 63 187301]

    [4]

    Shang D S, Sun J R, Shen B G 2013 Chin. Phys. B 22 067202

    [5]

    Zhang T, Bai Y, Jia C H, Zhang W F 2012 Chin. Phys. B 21 107304

    [6]

    Zhang T, Yin J, Zhao G F, Zhang W F, Xia Y D, Liu Z G 2014 Chin. Phys. B 23 087304

    [7]

    Jiang R, Wu Z, Du X, Han Z, Sun W 2015 Appl. Phys. Lett. 107 013502

    [8]

    Dong Z K, Duan S K, Hu X F, Wang L D 2014 Acta Phys. Sin. 63 128502 (in Chinese) [董哲康, 段书凯, 胡小方, 王丽丹 2014 63 128502]

    [9]

    Li Y T, Long S B, L H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S, Liu M 2011 Chin. Phys. B 20 017305

    [10]

    Jiang R, Li Z 2008 Appl. Phys. Lett. 92 012919

    [11]

    Chen R, Zhou L W, Wang J Y, Chen C J, Shao X L, Jiang H, Zhang K L, L L R, Zhao J S 2014 Acta Phys. Sin. 63 067202 (in Chinese) [陈然, 周立伟, 王建云, 陈长军, 邵兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石 2014 63 067202]

    [12]

    Chen Y N, Xu Z, Zhao S L, Yin F F, Zhang C W, Jiao B Y, Dong Y H 2011 Chin. Phys. B 20 127303

    [13]

    Jiang R, Xie E, Wang Z 2007 J. Mater. Sci. 42 7343

    [14]

    Miao F, Strachan J P, Yang J J, Zhang M X, Goldfarb I, Torrezan A C, Eschbach P, Kelley R D, Medeiros-Ribeiro G, Williams R S 2011 Adv. Mater. 47 5633

    [15]

    Kim S, Lee D, Park J, Jung S, Lee W, Shin J, Woo J, Choi G, Hwang C 2012 Nanotechnology 32 325702

    [16]

    Jiang R, Xie E, Chen Z, Zhang Z 2006 Appl. Surf. Sci. 253 2421

    [17]

    Liu Q, Sun J, Lv H B, Long S, Yin K B, Wan N, Li Y T, Sun L, Liu M 2012 Adv. Mater. 24 1844

    [18]

    Lin Y S, Zeng F, Tang S G, Liu H Y, Chen C, Gao S, Wang Y G, Pan F 2013 J. Appl. Phys. 113 064510

    [19]

    Jiang R, Xie E, Wang Z 2006 Appl. Phys. Lett. 89 142907

    [20]

    Morant C, Galan L, Sanz J M 1990 Surf. Interface Anal. 112 304

    [21]

    Muller D A, Nakagawa N, Ohtomo A, Grazul J L, Hwang H Y 2004 Nature 430 657

    [22]

    Leisegang T, Stocker H, Levin A, Weibach T, Zschornak M, Gutmann E, Rickers K, Gemming S, Meyer D 2009 Phys. Rev. Lett. 102 087601

    [23]

    Jiang W, Noman M, Lu Y M, Bain J A, Salvador P A, Skowronski M 2011 J. Appl. Phys. 110 034509

    [24]

    Park C, Seo Y, Jung J, Kim D W 2008 J. Appl. Phys. 103 054106

    [25]

    Chen Y S, Chen B, Gao B, Chen L P, Lian G L, Liu L F, Wang Y, Liu X Y, Kang J F 2011 Appl. Phys. Lett. 99 072113

  • [1] Ke Qing, Dai Yue-Hua. Kinetics study of ions in conductive filament growth process of electrochemical metallization resistive memory. Acta Physica Sinica, 2023, 72(24): 248501. doi: 10.7498/aps.72.20231232
    [2] Wang Ying, Huang Hui-Xiang, Huang Xiang-Lin, Guo Ting-Ting. Resistive switching characteristics of HfOx-based resistance random access memory under photoelectric synergistic regulation. Acta Physica Sinica, 2023, 72(19): 197201. doi: 10.7498/aps.72.20230797
    [3] Shi Xiao-Hong, Chen Jing-Jin, Cao Xin-Rui, Wu Shun-Qing, Zhu Zi-Zhong. Formation of oxygen vacancies in Li-rich Mn-based cathode material Li1.167Ni0.167Co0.167Mn0.5O2. Acta Physica Sinica, 2022, 71(17): 178202. doi: 10.7498/aps.71.20220274
    [4] Zhu Mao-Cong, Shao Ya-Jie, Zhou Jing, Chen Wen, Wang Zhi-Qing, Tian Jing. Resistive properties of CuInS2 quantum dots regulated by niobium-doped lead zirconate titanate ferroelectric films. Acta Physica Sinica, 2022, 71(20): 207301. doi: 10.7498/aps.71.20220911
    [5] Gong Shao-Kang, Zhou Jing, Wang Zhi-Qing, Zhu Mao-Cong, Shen Jie, Wu Zhi, Chen Wen. Size-controlled resistive switching performance and regulation mechanism of SnO2 QDs. Acta Physica Sinica, 2021, 70(19): 197301. doi: 10.7498/aps.70.20210608
    [6] Yu Zhi-Qiang, Liu Min-Li, Lang Jian-Xun, Qian Kai, Zhang Chang-Hua. Resistive switching characteristics and resistive switching mechanism of Au/TiO2/FTO memristor. Acta Physica Sinica, 2018, 67(15): 157302. doi: 10.7498/aps.67.20180425
    [7] Li Ping, Xu Yu-Tang. Monte Carlo simulation of time-dependent dielectric breakdown of oxide caused by migration of oxygen vacancies. Acta Physica Sinica, 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [8] Dai Yue-Hua, Pan Zhi-Yong, Chen Zhen, Wang Fei-Fei, Li Ning, Jin Bo, Li Xiao-Feng. Orientation and concentration of Ag conductive filament in HfO2-based resistive random access memory: first-principles study. Acta Physica Sinica, 2016, 65(7): 073101. doi: 10.7498/aps.65.073101
    [9] Dai Guang-Zhen, Jiang Xian-Wei, Xu Tai-Long, Liu Qi, Chen Jun-Ning, Dai Yue-Hua. Effect of oxygen vacancy on lattice and electronic properties of HfO2 by means of density function theory study. Acta Physica Sinica, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [10] Jiang Xian-Wei, Lu Shi-Bin, Dai Guang-Zhen, Wang Jia-Yu, Jin Bo, Chen Jun-Ning. Research of data retention for charge trapping memory by first-principles. Acta Physica Sinica, 2015, 64(21): 213102. doi: 10.7498/aps.64.213102
    [11] Chen Ran, Zhou Li-Wei, Wang Jian-Yun, Chen Chang-Jun, Shao Xing-Long, Jiang Hao, Zhang Kai-Liang, Lü Lian-Rong, Zhao Jin-Shi. Multilevel switching mechanism for resistive random access memory based on Cu/SiOx/Al structure. Acta Physica Sinica, 2014, 63(6): 067202. doi: 10.7498/aps.63.067202
    [12] Pang Hua, Deng Ning. Electric characteristics and resistive switching mechanism of Ni/HfO2/Pt resistive random access memory cell. Acta Physica Sinica, 2014, 63(14): 147301. doi: 10.7498/aps.63.147301
    [13] Wang Jia-Yu, Dai Yue-Hua, Zhao Yuan-Yang, Xu Jian-Bin, Yang Fei, Dai Guang-Zhen, Yang Jin. Research on charge trapping memory’s over erase. Acta Physica Sinica, 2014, 63(20): 203101. doi: 10.7498/aps.63.203101
    [14] Dai Guang-Zhen, Dai Yue-Hua, Xu Tai-Long, Wang Jia-Yu, Zhao Yuan-Yang, Chen Jun-Ning, Liu Qi. First principles study on influence of oxygen vacancy in HfO2 on charge trapping memory. Acta Physica Sinica, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [15] Yang Jin, Zhou Mao-Xiu, Xu Tai-Long, Dai Yue-Hua, Wang Jia-Yu, Luo Jing, Xu Hui-Fang, Jiang Xian-Wei, Chen Jun-Ning. Composite interfaces and electrode properties of resistive random access memory devices. Acta Physica Sinica, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [16] Wei Xiao-Ying, Hu Ming, Zhang Kai-Liang, Wang Fang, Liu Kai. Micro-structural and resistive switching properties of vanadium oxide thin films. Acta Physica Sinica, 2013, 62(4): 047201. doi: 10.7498/aps.62.047201
    [17] Ma Li-Sha, Zhang Qian-Cheng, Cheng Lin. First-principles calculations on electronic structures of Zn adsorbed on the anatase TiO2 (101) surface having oxygen vacancy and hydroxyl groups. Acta Physica Sinica, 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [18] Gong Yu, Chen Bai-Hua, Xiong Liang-Ping, Gu Mei, Xiong Jie, Gao Xiao-Ling, Luo Yang-Ming, Hu Sheng, Wang Yu-Hua. Effect of oxygen vacancies on the fluorescence and phosphorescence properties of Ca5MgSi3O12:Eu2+, Dy3+. Acta Physica Sinica, 2013, 62(15): 153201. doi: 10.7498/aps.62.153201
    [19] Sun Yun-Bin, Zhang Xiang-Qun, Li Guo-Ke, Yang Hai-Tao, Cheng Zhao-Hua. Effects of oxygen vacancy on impurity distribution and exchange interaction in Co-doped TiO2. Acta Physica Sinica, 2012, 61(2): 027503. doi: 10.7498/aps.61.027503
    [20] Yan Zhi-Jun, Wang Yin-Yue, Xu Run, Jiang Zui-Min. Structural characteristics of HfO2 films grown by e-beam evaporation. Acta Physica Sinica, 2004, 53(8): 2771-2774. doi: 10.7498/aps.53.2771
Metrics
  • Abstract views:  6240
  • PDF Downloads:  266
  • Cited By: 0
Publishing process
  • Received Date:  03 April 2015
  • Accepted Date:  24 June 2015
  • Published Online:  05 October 2015

/

返回文章
返回
Baidu
map