-
The HfOx-based resistive random access memory (RRAM) has been extensively investigated as one of the emerging nonvolatile memory (NVM) candidates due to its excellent memory performance and compatibility with CMOS process. In this study, the influences of deposition ambient, especially the oxygen partial pressure during thin film sputtering, on the resistive switching characteristics are discussed in detail for possible nonvolatile memory applications. The Ni/HfOx/TiN RRAMs are fabricated, and the HfOx films with different oxygen content are deposited by a radio frequency magnetron sputtering at room temperature under different oxygen partial pressures. The oxygen partial pressures in the sputter deposition process are 2%, 4% and 6% relative to engineer oxygen content in the HfOx film. Current-voltage (I-V) measurements, X-ray photoelectron spectroscopy, and atomic force microscopy are performed to explain the possible nature of the stable resistive switching phenomenon. Through the current-voltage measurement, typical resistive switching behavior is observed in Ni/HfOx/TiN device cells. It is found that with the increase of the oxygen partial pressure during the preparation of HfOx films, the stoichiometric ratio of O in the film is improved, the root mean square (RMS) of the surface roughness of the film slightly decreases due to the slower deposition rate under a higher oxygen partial pressure, and the high resistance state (HRS) current decreases. In addition, by controlling the oxygen content of the device, the endurance performance of the device is improved, which reaches up to 103 under a 6% oxygen partial pressure. The HfOx films prepared at a higher oxygen partial pressure supply enough oxygen ions to preserve the switching effect. As the oxygen partial pressure increases, the uniformity of the switching voltage is improved, which can be attributed to the fact that better oxidation prevents the point defects (oxygen vacancies) from aggregating into extended defects. Through the linear fitting and temperature test, it is found that the conduction mechanism of Ni/HfOx/TiN RRAM device cells in low resistance state is an ohmic conduction mechanism, while in high resistance state it is a Schottky emission mechanism. The interface between TE and the oxide layer (HfOx) is expected to influence the resistive switching phenomenon. The activation energy of the device is investigated based on the Arrhenius plots in HRS. A switching model is proposed according to the theory of oxygen vacancy conductive filament. Furthermore, the self-compliance behavior is found and explained.
-
Keywords:
- resistive random access memory /
- HfOx thin film /
- oxygen partial pressure /
- resistive switching mechanism
[1] Lelmini D 2016 Semicond. Sci. Technol. 31 063002
[2] Chang T C, Chang K C, Tsai T M, Chu T J, Sze S M 2016 Mater. Today 19 254
[3] Han S T, Zhou Y, Roy V A 2013 Adv. Mater. 25 5425
[4] Huang Y, Shen Z H, Wu Y, Wang X Q, Zhang S F, Shi X Q, Zeng H B 2016 RSC Adv. 6 17867
[5] Chen R, Zou L W, Wang J Y, Chen C J, Shao X L, Jiang H, Zhang K L, L L R, Zhao J S 2014 Acta Phys. Sin. 63 067202 (in Chinese) [陈然, 周立伟, 王建云, 陈长军, 绍兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石 2014 63 067202]
[6] Shang J, Xue W H, Ji Z H, Liu G, Niu X H, Yi X H, Pan L, Zhan Q F, Xu X H, Li R W 2017 Nanoscale 9 7037
[7] Park K, Lee J S 2016 Sci. Rep. 6 23069
[8] Chen Y Y, Pourtois G, Adelmann C, Goux L, Govoreanu B, Degreave R, Jurczak M, Kittl J A, Groeseneken G, Wouters D J 2012 Appl. Phys. Lett. 100 113513
[9] Kim W, Menzel S, Wouters D J, Guo Y Z, Robertson J, Roesgen B, Waser R, Rana V 2016 Nanoscale 8 17774
[10] Jiang R, Du X H, Han Z Y, Sun D W 2015 Acta Phys. Sin. 64 207302 (in Chinese) [蒋然, 杜翔浩, 韩祖银, 孙登维 2015 64 207302]
[11] Yan Z B, Liu J M 2013 Sci. Rep. 3 2482
[12] Hao A, Ismail M, He S, Qin N, Huang W H, Wu J, Bao D H 2018 J. Alloys Compd. 732 573
[13] Ito D, Hamada Y, Otsuka S, Shimizu T, Shingubara S 2015 Jpn. J. Appl. Phys. 54 06FH11
[14] Pang H, Deng N 2014 Acta Phys. Sin. 63 147301 (in Chinese) [庞华, 邓宁 2014 63 147301]
[15] Jiang R, Xie E Q, Wang Z F 2016 Appl. Phys. Lett. 89 142907
[16] Bousoulas P, Michelakaki I, Tsoukalas D 2014 J. Appl. Phys. 115 034516
[17] Jabeen S, Ismail M, Rana M A, Ahmed E 2017 Mater. Res. Express 4 056401
[18] Wang X J, Hu C, Song Y L, Zhao X F, Zhang L L, L Z, Wang Y, Liu Z G, Wang Y, Zhang Y, Sui Y, Song B 2016 Sci. Rep. 6 30335
[19] Fang Z, Yu H Y, Liu W J, Wang Z R, Tran X A, Gao B, Kang J F 2010 IEEE Electron Device Lett. 31 476
[20] Alamgir Z, Beckmann K, Holt J, Cady N C 2017 Appl. Phys. Lett. 111 063111
[21] Mahapatra R, Maji S, Horsfall A B, Wright N G 2015 Microelectron. Eng. 138 118
[22] Shao X L, Zhou L W, Yoon K J, Jiang H, Zhao J S, Zhang K L, Yoo S, Hwang C S 2015 Nanoscale 7 11063
[23] Puglisi F M, Qafa A, Pavan P 2015 IEEE Electron Device Lett. 36 244
[24] Kondaiah P, Shaik H, Rao G M 2015 Electron. Mater. Lett. 11 592
-
[1] Lelmini D 2016 Semicond. Sci. Technol. 31 063002
[2] Chang T C, Chang K C, Tsai T M, Chu T J, Sze S M 2016 Mater. Today 19 254
[3] Han S T, Zhou Y, Roy V A 2013 Adv. Mater. 25 5425
[4] Huang Y, Shen Z H, Wu Y, Wang X Q, Zhang S F, Shi X Q, Zeng H B 2016 RSC Adv. 6 17867
[5] Chen R, Zou L W, Wang J Y, Chen C J, Shao X L, Jiang H, Zhang K L, L L R, Zhao J S 2014 Acta Phys. Sin. 63 067202 (in Chinese) [陈然, 周立伟, 王建云, 陈长军, 绍兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石 2014 63 067202]
[6] Shang J, Xue W H, Ji Z H, Liu G, Niu X H, Yi X H, Pan L, Zhan Q F, Xu X H, Li R W 2017 Nanoscale 9 7037
[7] Park K, Lee J S 2016 Sci. Rep. 6 23069
[8] Chen Y Y, Pourtois G, Adelmann C, Goux L, Govoreanu B, Degreave R, Jurczak M, Kittl J A, Groeseneken G, Wouters D J 2012 Appl. Phys. Lett. 100 113513
[9] Kim W, Menzel S, Wouters D J, Guo Y Z, Robertson J, Roesgen B, Waser R, Rana V 2016 Nanoscale 8 17774
[10] Jiang R, Du X H, Han Z Y, Sun D W 2015 Acta Phys. Sin. 64 207302 (in Chinese) [蒋然, 杜翔浩, 韩祖银, 孙登维 2015 64 207302]
[11] Yan Z B, Liu J M 2013 Sci. Rep. 3 2482
[12] Hao A, Ismail M, He S, Qin N, Huang W H, Wu J, Bao D H 2018 J. Alloys Compd. 732 573
[13] Ito D, Hamada Y, Otsuka S, Shimizu T, Shingubara S 2015 Jpn. J. Appl. Phys. 54 06FH11
[14] Pang H, Deng N 2014 Acta Phys. Sin. 63 147301 (in Chinese) [庞华, 邓宁 2014 63 147301]
[15] Jiang R, Xie E Q, Wang Z F 2016 Appl. Phys. Lett. 89 142907
[16] Bousoulas P, Michelakaki I, Tsoukalas D 2014 J. Appl. Phys. 115 034516
[17] Jabeen S, Ismail M, Rana M A, Ahmed E 2017 Mater. Res. Express 4 056401
[18] Wang X J, Hu C, Song Y L, Zhao X F, Zhang L L, L Z, Wang Y, Liu Z G, Wang Y, Zhang Y, Sui Y, Song B 2016 Sci. Rep. 6 30335
[19] Fang Z, Yu H Y, Liu W J, Wang Z R, Tran X A, Gao B, Kang J F 2010 IEEE Electron Device Lett. 31 476
[20] Alamgir Z, Beckmann K, Holt J, Cady N C 2017 Appl. Phys. Lett. 111 063111
[21] Mahapatra R, Maji S, Horsfall A B, Wright N G 2015 Microelectron. Eng. 138 118
[22] Shao X L, Zhou L W, Yoon K J, Jiang H, Zhao J S, Zhang K L, Yoo S, Hwang C S 2015 Nanoscale 7 11063
[23] Puglisi F M, Qafa A, Pavan P 2015 IEEE Electron Device Lett. 36 244
[24] Kondaiah P, Shaik H, Rao G M 2015 Electron. Mater. Lett. 11 592
Catalog
Metrics
- Abstract views: 6680
- PDF Downloads: 257
- Cited By: 0