搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米CdS/碳纳米管复合材料的光电特性

李振武

引用本文:
Citation:

纳米CdS/碳纳米管复合材料的光电特性

李振武

Opto-electronic properties of CdS nano particle/carbon nanotube composites

Li Zhen-Wu
PDF
导出引用
  • 基于CdS良好的光学性质和单壁碳纳米管(SWCNT)优异的电子学性质, 制备了纳米CdS/SWCNT复合材料和纳米CdS/聚乙烯亚胺(PEI)功能化SWCNT复合材料, 并利用日光灯光源模拟太阳光研究了它们的光电性质. 结果表明, 纳米CdS/SWCNT复合材料呈现显著的负光电导现象, 而纳米CdS/PEI-SWCNT复合材料呈现强烈的正光电导现象. 用电子转移理论对这一结果进行了解释. 两样品在大角度弯折的情况下, 光电性质均基本没有变化. 因此, 纳米CdS/碳纳米管复合材料在光电领域, 尤其是新兴的柔性光电子学领域有着良好的应用前景.
    Based on the outstanding optical properties of CdS and excellent electronic properties of single walled carbon nanotube (SWCNT), nano-CdS particle/SWCNT composite materials and nano-CdS/polyethyleneimine (PEI) functionalized SWCNT composite materials are prepared. Their optical and the electrical properties are investigated by using fluorescent light simulated sunlight. The results show that nano-CdS/SWCNT composite material displays a significant negative photo-conductivity phenomenon, while nano-CdS/PEI-SWCNT composite material displays a positive photo-conductivity phenomenon, which can be were explained by using electron-transfer theory. The optical and the electrical properties of two samples are unchanged in the case of large angle bending. Therefore, the nano-CdS/SWCNT composite materials in optical and electrical areas, especially in the emerging field of flexible opto-electronics have a good prospect.
    • 基金项目: 山东省自然科学基金项目(批准号: Y2008A16)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Shandong Province, China (No.Y2008A16).
    [1]

    Lai Y H, Lin C Y, Chen H W, Chen J G, Kung C W, Vittal R, Ho K C 2010 J. Mater. Chem. 20 9379

    [2]

    Singh C P, Roy S 2004 Opt. Eng. 43 426

    [3]

    LiuH J, Zhou Y C, Yang Y, Wang W X, Qu L, Chen C, Liu D S, Zhang D Q, Zhu D B 2008 J. Phys. Chem. B 112 6893

    [4]

    Star A, Lu Y, Bradley K, Gruner G 2004 Nano Lett. 4 1587

    [5]

    Lehman J, Sanders A, Hanssen L, Wilthan B, Zeng J A, Jensen C 2010 Nano Lett. 10 3261

    [6]

    Dickerson T J, Tremblay M R, Hoffman T Z, Ruiz D I, Janda K D 2003 J. Am. Chem. Soc. 125 15395

    [7]

    Sun X Y, Lin J 2009 J. Phys. Chem. C 113 4970

    [8]

    Zhang X R, Lin Y H, Zhang J F, He D Q, Wang D J 2010 Acta Phys. -Chim. Sin. 26 2733 (in Chinese) [张晓茹, 林艳红, 张健夫, 何冬青, 王德军 2010 物理化学学报 26 2733]

    [9]

    Mcdonald S A, Konstantatos G, Zhang S, Cyr P W, Klem E J D, Levina L, Sargent E H 2005 Nat. Mater. 4 138

    [10]

    Dai S Y, Kong F T, Hu L H, Shi C W, Fang X Q, Pan X, Wang K J 2005 Acta Phys. Sin. 54 1919 (in Chinese) [戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉 2005 54 1919]

    [11]

    Gabor N M, Zhong Z, Bosnick K, Park J, Mceuen P L 2009 Science 325 1367

    [12]

    Streetman B G, Sanjay B 2000 Solid State Electronic Devices (New Jersey: Prentice Hall)

    [13]

    Romeo A, Batzner D L, Zogg H, Vignali C, Tiwari A N 2001 Sol. Energ. Mat. Sol. C 67 311

    [14]

    Hossain M F, Biswas S, Takahashi T 2009 Thin Solid Films 518 1599

    [15]

    Shim M, Javey A, Shi Kam N W, Dai H 2001 J. Am. Chem. Soc. 123 11512

    [16]

    Siddons G P, Merchin D, Back J H, Jeong J K, ShimM2004 Nano Lett. 4 927

    [17]

    Seidel R, Graham A P, Unger E, Duesberg G S, Liebau M, Steinhoegl W, Kreupl F, Hoenlein W, Pompe W 2004 Nano Lett. 4 831

    [18]

    Cao Q, Rogers J A 2009 Adv. Mater. 21 29

    [19]

    Vitmeyer F, Seger B, Kamat P V 2007 Adv. Mater. 19 2935

    [20]

    Shim M, Back J H, Ozel T, Kwon K 2005 Phys. Rev. B 71 205411

    [21]

    Spicer W E, Kindig N B 1964 Solid State Commun. 2 13

    [22]

    Liu P, Sun Q, Zhu F, Liu K, Jiang K, Liu L, Li Q, Fan S 2008 Nano Lett. 8 647

    [23]

    Olek M, Büsgen T, Hilgendorff M, GiersigM2006 J. Phys. Chem. B 110 12901

    [24]

    Liu S, Li J, Shen Q, Cao Y, Guo X, Zhang G, Feng C, Zhang J, Liu Z, Steigerwald M L, Xu D, Nuckolls C 2009 Angew. Chem. 121 4856

    [25]

    Wang W, Kumta P N 2010 ACS Nano 4 2233

    [26]

    Yosida Y, Oguro I 1999 J. Appl. Phys. 86 999

    [27]

    Dang Z M, Wang L, Yin Y, Zhang Q, Lei Q Q 2007 Adv. Mater. 19 852

    [28]

    Yao S H, Dang Z M, Jiang M J, Bai J B 2008 Appl. Phys. Lett. 93 182903

    [29]

    Forrest S R 2004 Nature 428 911

  • [1]

    Lai Y H, Lin C Y, Chen H W, Chen J G, Kung C W, Vittal R, Ho K C 2010 J. Mater. Chem. 20 9379

    [2]

    Singh C P, Roy S 2004 Opt. Eng. 43 426

    [3]

    LiuH J, Zhou Y C, Yang Y, Wang W X, Qu L, Chen C, Liu D S, Zhang D Q, Zhu D B 2008 J. Phys. Chem. B 112 6893

    [4]

    Star A, Lu Y, Bradley K, Gruner G 2004 Nano Lett. 4 1587

    [5]

    Lehman J, Sanders A, Hanssen L, Wilthan B, Zeng J A, Jensen C 2010 Nano Lett. 10 3261

    [6]

    Dickerson T J, Tremblay M R, Hoffman T Z, Ruiz D I, Janda K D 2003 J. Am. Chem. Soc. 125 15395

    [7]

    Sun X Y, Lin J 2009 J. Phys. Chem. C 113 4970

    [8]

    Zhang X R, Lin Y H, Zhang J F, He D Q, Wang D J 2010 Acta Phys. -Chim. Sin. 26 2733 (in Chinese) [张晓茹, 林艳红, 张健夫, 何冬青, 王德军 2010 物理化学学报 26 2733]

    [9]

    Mcdonald S A, Konstantatos G, Zhang S, Cyr P W, Klem E J D, Levina L, Sargent E H 2005 Nat. Mater. 4 138

    [10]

    Dai S Y, Kong F T, Hu L H, Shi C W, Fang X Q, Pan X, Wang K J 2005 Acta Phys. Sin. 54 1919 (in Chinese) [戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉 2005 54 1919]

    [11]

    Gabor N M, Zhong Z, Bosnick K, Park J, Mceuen P L 2009 Science 325 1367

    [12]

    Streetman B G, Sanjay B 2000 Solid State Electronic Devices (New Jersey: Prentice Hall)

    [13]

    Romeo A, Batzner D L, Zogg H, Vignali C, Tiwari A N 2001 Sol. Energ. Mat. Sol. C 67 311

    [14]

    Hossain M F, Biswas S, Takahashi T 2009 Thin Solid Films 518 1599

    [15]

    Shim M, Javey A, Shi Kam N W, Dai H 2001 J. Am. Chem. Soc. 123 11512

    [16]

    Siddons G P, Merchin D, Back J H, Jeong J K, ShimM2004 Nano Lett. 4 927

    [17]

    Seidel R, Graham A P, Unger E, Duesberg G S, Liebau M, Steinhoegl W, Kreupl F, Hoenlein W, Pompe W 2004 Nano Lett. 4 831

    [18]

    Cao Q, Rogers J A 2009 Adv. Mater. 21 29

    [19]

    Vitmeyer F, Seger B, Kamat P V 2007 Adv. Mater. 19 2935

    [20]

    Shim M, Back J H, Ozel T, Kwon K 2005 Phys. Rev. B 71 205411

    [21]

    Spicer W E, Kindig N B 1964 Solid State Commun. 2 13

    [22]

    Liu P, Sun Q, Zhu F, Liu K, Jiang K, Liu L, Li Q, Fan S 2008 Nano Lett. 8 647

    [23]

    Olek M, Büsgen T, Hilgendorff M, GiersigM2006 J. Phys. Chem. B 110 12901

    [24]

    Liu S, Li J, Shen Q, Cao Y, Guo X, Zhang G, Feng C, Zhang J, Liu Z, Steigerwald M L, Xu D, Nuckolls C 2009 Angew. Chem. 121 4856

    [25]

    Wang W, Kumta P N 2010 ACS Nano 4 2233

    [26]

    Yosida Y, Oguro I 1999 J. Appl. Phys. 86 999

    [27]

    Dang Z M, Wang L, Yin Y, Zhang Q, Lei Q Q 2007 Adv. Mater. 19 852

    [28]

    Yao S H, Dang Z M, Jiang M J, Bai J B 2008 Appl. Phys. Lett. 93 182903

    [29]

    Forrest S R 2004 Nature 428 911

  • [1] 刘淑倩, 张海燕, 张辉, 朱文发, 陈祎婷, 刘雅洁. 融合环形统计矢量的复合材料褶皱缺陷超声相位迁移成像.  , 2024, 73(17): 174301. doi: 10.7498/aps.73.20240714
    [2] 查俊伟, 查磊军, 郑明胜. 聚偏氟乙烯基复合材料储能特性优化策略.  , 2023, 72(1): 018401. doi: 10.7498/aps.72.20222012
    [3] 谈松林, 庄永起, 易健宏. 溶胶-喷雾法制备多壁碳纳米管增强氧化铝基复合材料及性能研究.  , 2022, 71(1): 018801. doi: 10.7498/aps.71.20211043
    [4] 周海涛, 熊希雅, 罗飞, 罗炳威, 刘大博, 申承民. 原位生长技术制备石墨烯强化铜基复合材料.  , 2021, 70(8): 086201. doi: 10.7498/aps.70.20201943
    [5] 张珠峰, 任银拴. 溶剂热制备铬掺杂硫化锌和硫化纳米结构和磁性能.  , 2021, 70(13): 137103. doi: 10.7498/aps.70.20201963
    [6] 黄浩, 张侃, 吴明, 李虎, 王敏涓, 张书铭, 陈建宏, 文懋. SiC纤维增强Ti17合金复合材料轴向残余应力的拉曼光谱和X射线衍射法对比研究.  , 2018, 67(19): 197203. doi: 10.7498/aps.67.20181157
    [7] 张源, 高雁军, 胡诚, 谭兴毅, 邱达, 张婷婷, 朱永丹, 李美亚. 磁铁/压电双晶片复合材料磁电耦合性能的优化设计.  , 2016, 65(16): 167501. doi: 10.7498/aps.65.167501
    [8] 李振武. 单壁碳纳米管膜及其三聚氰胺甲醛树脂复合材料的光电特性.  , 2014, 63(10): 106101. doi: 10.7498/aps.63.106101
    [9] 杨金, 周茂秀, 徐太龙, 代月花, 汪家余, 罗京, 许会芳, 蒋先伟, 陈军宁. 阻变存储器复合材料界面及电极性质研究.  , 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [10] 司黎明, 侯吉旋, 刘埇, 吕昕. 基于负微分电阻碳纳米管的太赫兹波有源超材料特性参数提取.  , 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [11] 胡小颖, 王淑敏, 裴艳慧, 田宏伟, 朱品文. 碳纳米片-碳纳米管复合材料的一步合成及其场 发射性质研究.  , 2013, 62(3): 038101. doi: 10.7498/aps.62.038101
    [12] 唐晶晶, 冯妍卉, 李威, 崔柳, 张欣欣. 碳纳米管电缆式复合材料的热导率.  , 2013, 62(22): 226102. doi: 10.7498/aps.62.226102
    [13] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 王雪艳. 碳纳米管掺杂对聚合物聚(2-甲氧基-5-辛氧基)对苯乙炔-PbSe量子点复合材料性能的影响.  , 2013, 62(12): 128801. doi: 10.7498/aps.62.128801
    [14] 霍雁, 张存林. 碳纤维复合材料内部缺陷深度的定量红外检测.  , 2012, 61(14): 144204. doi: 10.7498/aps.61.144204
    [15] 张忠强, 丁建宁, 刘珍, Y. Xue, 程广贵, 凌智勇. 碳纳米管-聚乙烯复合材料界面力学特性分析.  , 2012, 61(12): 126202. doi: 10.7498/aps.61.126202
    [16] 刘军, 周伟昌, 张建福. CdS:Cu一维纳米结构及其光子学特性研究.  , 2012, 61(20): 206101. doi: 10.7498/aps.61.206101
    [17] 周丽梅, 李炜, 蒋俊, 陈建敏, 李勇, 许高杰. β-Zn4Sb3/Zn1-δAlδO复合材料的制备及热电性能研究.  , 2011, 60(6): 067201. doi: 10.7498/aps.60.067201
    [18] 孙建平, 翁家宝, 黄小珠, 马琳璞. 聚(2,5-二丁氧基)对苯乙炔/多壁碳纳米管复合材料的制备和性能研究.  , 2009, 58(9): 6523-6529. doi: 10.7498/aps.58.6523
    [19] 周剑平, 施 展, 刘 刚, 何泓材, 南策文. 铁电/铁磁1-3型结构复合材料磁电性能分析.  , 2006, 55(7): 3766-3771. doi: 10.7498/aps.55.3766
    [20] 施 展, 南策文. 铁电/铁磁三相颗粒复合材料的磁电性能计算.  , 2004, 53(8): 2766-2770. doi: 10.7498/aps.53.2766
计量
  • 文章访问数:  7030
  • PDF下载量:  361
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-30
  • 修回日期:  2011-04-09
  • 刊出日期:  2012-01-05

/

返回文章
返回
Baidu
map