-
In this paper, resistive switching device based on Cu/SiOx/Al structure is fabricated to examine its resistive switching characteristics and explore its resistive switching mechanisms. By adjusting limiting current, four stable resistance states are obtained. All of the resistive ratios between adjacent resistance states are over than 10. Moreover, the retention data of these four states at room temperature keep stable up to 1000 s. The temperature-dependent measurement and I-V curves fitting results show that the resistive switching mechanisms of the four states are different: resistance states 1 and 2 are due to Ohmic conduction mechanism, resistance state 3 is due to Pool-Frenkel emission, and resistance state 4 is due to Schottky emission mechanism. Subsequently, a resistive switching model for Cu/SiOx/Al structure is proposed.
-
Keywords:
- resistive random access memory /
- SiOx thin film /
- multilevel /
- resistive switching mechanism
[1] Waser R, Aono M 2007 Nat. Mater. 6 833
[2] Waser R 2012 J. Nanosci. Nanotechnol. 12 7628
[3] Jeong D S, Thomas R, Katiyar R S, Scott J F, Kohlstedt H, Petraru A, Hwang C S 2012 Rep. Prog. Phys. 75 076502
[4] Yang J J, Strukov D B, Stewart D R 2013 Nat. Nanotechnol. 8 13
[5] Mikolajick T, Nagel N, Riedel S, Mueller T, Kuesters K H 2007 Mater. Sci. Pol. 25 33
[6] Wang Y, Liu Q, Long S, Wang W, Wang Q, Zhang M, Zhang S, Li Y, Zuo Q, Yang J, Liu M 2010 Nanotechnology 21 045202
[7] Schindler C, Thermadam S C P, Waser R, Kozicki M N 2007 IEEE Trans. Electron Dev. 54 2762
[8] Hwang S K, Lee J M, Kim S, Park J S, Park H I, Ahn C W, Lee K J, Lee T, Kim S O 2012 Nano Lett. 12 2217
[9] Li Y T, Long S B, Lu H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S, Liu M 2011 Chin. Phys. B 20 017305
[10] Liu Z Y, Zhang P J, Meng Y, Li D, Meng Q Y, Li J Q, Zhao H W 2012 Chin. Phys. B 21 047302
[11] Park J, Biju K P, Jung S, Lee W, Lee J, Kim S, Park S, Shin J, Hwang H 2011 IEEE Electron Dev. Lett. 32 476
[12] Choi S J, Park G S, Kim K H, Cho S, Yang W Y, Li X S, Moon J H, Lee K J, Kim K 2011 Adv. Mater. 23 3272
[13] Zhao J W, Liu F J, Huang H Q, Hu Z F, Zhang X Q 2012 Chin. Phys. B 21 065201
[14] Huang D, Wu J J, Tang Y H 2013 Chin. Phys. B 22 038401
[15] Russo U, Kamalanathan D, Ielmini D, Lacaita A L, Kozicki M N 2009 IEEE Trans. Electron Dev. 56 1040
[16] Liu M, Abid Z, Wang W, He X L, Liu Q, Guan W H 2009 Appl. Phys. Lett. 94 233106
[17] He C L, Shi Z W, Zhang L C, Yang W, Yang R, Shi D X, Zhang G Y 2012 ACS Nano. 6 4214
[18] Zhang Y, Wu H, Bai Y, Chen A, Yu Z, Zhang J, Qian H 2013 Appl. Phys. Lett. 102 233502
[19] Yoon J H, Han J H, Jung J S, Jeon W, Kim G H, Song S J, Seok J Y, Yoon K J, Lee M H, Hwang C S 2013 Adv. Mater. 25 1987
[20] Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W, Chen D M 2010 Chin. Phys. B 19 037304
[21] Wen X Z, Chen X, Wu N J, Ignatiev A 2011 Chin. Phys. B 20 097703
[22] Wei X Y, Hu M, Zhang K L, Wang F, Liu K 2012 Acta Phys. Sin. 62 047201 (in Chinese) [韦晓莹, 胡明, 张楷亮, 王芳, 刘凯 2012 62 047201]
[23] Mehonic A, Cueff S b, Wojdak M, Hudziak S, Jambois O, Labbé C, Garrido B, Rizk R, Kenyon A J 2012 J. Appl. Phys. 111 074507
[24] Edelstein D, Heidenreich J, Goldblatt R, Cote W, Uzoh C, Lustig N, Roper P, McDevitt T, Motsiff W, Simon A, Dukovic J, Wachnik R, Rathore H, Schulz R, Su L, Luce S, Slattery J 1997 Int. Electron Dev. Meeting 1997 IEDM Technical Digest Washington DC, USA, Dec. 10–10, 1997 p773
-
[1] Waser R, Aono M 2007 Nat. Mater. 6 833
[2] Waser R 2012 J. Nanosci. Nanotechnol. 12 7628
[3] Jeong D S, Thomas R, Katiyar R S, Scott J F, Kohlstedt H, Petraru A, Hwang C S 2012 Rep. Prog. Phys. 75 076502
[4] Yang J J, Strukov D B, Stewart D R 2013 Nat. Nanotechnol. 8 13
[5] Mikolajick T, Nagel N, Riedel S, Mueller T, Kuesters K H 2007 Mater. Sci. Pol. 25 33
[6] Wang Y, Liu Q, Long S, Wang W, Wang Q, Zhang M, Zhang S, Li Y, Zuo Q, Yang J, Liu M 2010 Nanotechnology 21 045202
[7] Schindler C, Thermadam S C P, Waser R, Kozicki M N 2007 IEEE Trans. Electron Dev. 54 2762
[8] Hwang S K, Lee J M, Kim S, Park J S, Park H I, Ahn C W, Lee K J, Lee T, Kim S O 2012 Nano Lett. 12 2217
[9] Li Y T, Long S B, Lu H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S, Liu M 2011 Chin. Phys. B 20 017305
[10] Liu Z Y, Zhang P J, Meng Y, Li D, Meng Q Y, Li J Q, Zhao H W 2012 Chin. Phys. B 21 047302
[11] Park J, Biju K P, Jung S, Lee W, Lee J, Kim S, Park S, Shin J, Hwang H 2011 IEEE Electron Dev. Lett. 32 476
[12] Choi S J, Park G S, Kim K H, Cho S, Yang W Y, Li X S, Moon J H, Lee K J, Kim K 2011 Adv. Mater. 23 3272
[13] Zhao J W, Liu F J, Huang H Q, Hu Z F, Zhang X Q 2012 Chin. Phys. B 21 065201
[14] Huang D, Wu J J, Tang Y H 2013 Chin. Phys. B 22 038401
[15] Russo U, Kamalanathan D, Ielmini D, Lacaita A L, Kozicki M N 2009 IEEE Trans. Electron Dev. 56 1040
[16] Liu M, Abid Z, Wang W, He X L, Liu Q, Guan W H 2009 Appl. Phys. Lett. 94 233106
[17] He C L, Shi Z W, Zhang L C, Yang W, Yang R, Shi D X, Zhang G Y 2012 ACS Nano. 6 4214
[18] Zhang Y, Wu H, Bai Y, Chen A, Yu Z, Zhang J, Qian H 2013 Appl. Phys. Lett. 102 233502
[19] Yoon J H, Han J H, Jung J S, Jeon W, Kim G H, Song S J, Seok J Y, Yoon K J, Lee M H, Hwang C S 2013 Adv. Mater. 25 1987
[20] Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W, Chen D M 2010 Chin. Phys. B 19 037304
[21] Wen X Z, Chen X, Wu N J, Ignatiev A 2011 Chin. Phys. B 20 097703
[22] Wei X Y, Hu M, Zhang K L, Wang F, Liu K 2012 Acta Phys. Sin. 62 047201 (in Chinese) [韦晓莹, 胡明, 张楷亮, 王芳, 刘凯 2012 62 047201]
[23] Mehonic A, Cueff S b, Wojdak M, Hudziak S, Jambois O, Labbé C, Garrido B, Rizk R, Kenyon A J 2012 J. Appl. Phys. 111 074507
[24] Edelstein D, Heidenreich J, Goldblatt R, Cote W, Uzoh C, Lustig N, Roper P, McDevitt T, Motsiff W, Simon A, Dukovic J, Wachnik R, Rathore H, Schulz R, Su L, Luce S, Slattery J 1997 Int. Electron Dev. Meeting 1997 IEDM Technical Digest Washington DC, USA, Dec. 10–10, 1997 p773
Catalog
Metrics
- Abstract views: 6329
- PDF Downloads: 937
- Cited By: 0