-
Dielectric capacitors have been widely used in crucial energy storage systems of electronic power systems because of their advantages such as fast charge discharge rates, long cycle lifetimes, low losses, and flexible and convenient processingc. However, the dielectric capacitors have lower energy storage densities than electrochemical energy storage devices, which makes them difficult to meet higher application requirements for electrical engineering at the present stage. Polyvinylidene fluoride (PVDF) based polymers show great potential in achieving improved energy storage properties, which is attributed to their high dielectric constants and high breakdown strengths. This work systematically reviews PVDF-based nanocomposites for energy storage applications. Dielectric constant, breakdown strength and charge discharge efficiency are three main parameters related to energy storage properties, which are proposed to discuss their mechanisms of action and optimization strategies. Finally, the key scientific problems of PVDF-based high energy storage composites are summarized and considered, and the future development trend of dielectric capacitors is also prospected.
-
Keywords:
- dielectric capacitors /
- polyvinylidene fluoride /
- composite materials /
- energy storage density
[1] Yu M P, Wang A J, Tian F Y, Song H Q, Wang Y S, Li C, Hong J D, Shi G Q 2015 Nanoscale 7 5292
Google Scholar
[2] Yu M P, Li R, Tong Y, Li Y R, Li C, Hong J D, Shi G Q 2015 J. Mater. Chem. A 3 9609
Google Scholar
[3] Wang X L, Shi G Q 2015 Energy Environ. Sci. 8 790
Google Scholar
[4] Zhao Z H, Li M T, Zhang L P, Dai L M, Xia Z H 2015 Adv. Mater. 27 6834
Google Scholar
[5] Sengodan S, Choi S, Jun A, Shin T H, Ju Y W, Jeong H Y, Shin J, T J, Irvine S, Kim G 2015 Nature Mater. 14 205
Google Scholar
[6] Doan-Nguyen V V T, Zhang S, Trigg E B, Agarwal R, Li J, Su D, Winey K I, Murray C B 2015 ACS Nano 9 8108
Google Scholar
[7] Ho J, Ramprasad R, Boggs S 2007 IEEE Trns. Dielectr. Electr. Insul. 14 1295
Google Scholar
[8] Yin K, Zhou Z, Schuele D E, Wolak M, Zhu L, Baer E 2016 ACS Appl. Mater. Interfaces 8 13555
Google Scholar
[9] Xu Y, Shi G, Duan X 2015 Acc. Chem. Res. 48 1666
Google Scholar
[10] Wu Q, Xu Y, Yao Z, Liu A, Shi G Q 2010 ACS Nano 4 1963
Google Scholar
[11] Yuan K, Xu Y, Uihlein J, Brunklaus G, Shi L, Heiderhoff R, Que M M, Forster M, Chasse T, Pichler T, Riedl T, Chen Y W, Scherf U 2015 Adv. Mater. 27 6714
Google Scholar
[12] Starkweather Jr H W, Avakian P, Matheson Jr R R 1992 Macromolecules 25 6871
Google Scholar
[13] Dang Z M, Yuan J K, Yao S H, Liao R J 2013 Adv. Mater. 25 6334
Google Scholar
[14] Han K, Li Q, Chanthad C, Gadinski M R, Zhang G Z, Wang Q 2015 Adv. Funct. Mater. 25 3505
Google Scholar
[15] Diao C L, Liu H X, Lou G H, Zheng H W, Yao Z H, Hao H, Cao M H 2019 J. Alloys Compd. 781 378
Google Scholar
[16] Zhu L 2014 J. Phys. Chem. Lett. 5 3677
Google Scholar
[17] Lim J Y, Park S Y, Kwak S, Kim H J, Seo Y 2016 Polymer 97 465
Google Scholar
[18] Claude J, Lu Y Y, Li K, Wang Q 2008 Chem. Mater. 20 2078
Google Scholar
[19] Guan F X, Wang J, Pan J L, Wang Q, Zhu L 2010 Macromolecules 43 6739
Google Scholar
[20] Han R, Jin J, Khanchaitit P, Wang J K, Wang Q 2012 Polymer 53 1277
Google Scholar
[21] Gadinski M R, Han K, Li Q, Zhang G Z, Reainthippayasakul W, Wang Q 2014 ACS Appl. Mater. Interfaces 6 18981
Google Scholar
[22] Gadinski M R, Chanthad C, Han K, Dong L J, Wang Q 2014 Polym. Chem. 5 5957
Google Scholar
[23] Guan F X, Pan J L, Wang J, Wang Q, Zhu L 2010 Macromolecules 43 384
Google Scholar
[24] Chen X Z, Li X Y, Qian X S, Lu S G, Gu H M, Lin M, Shen Q D, Zhang Q M 2013 Polymer 54 2373
Google Scholar
[25] Gadinski M R, Li Q, Zhang G Z, Zhang X S, Wang Q 2015 Macromolecules 48 2731
Google Scholar
[26] Yang L Y, Tyburski B A, Dos Santos F D, Endoh M K, Koga T, Huang D, Wang Y J, Zhu L 2014 Macromolecules 47 8119
Google Scholar
[27] Neese B, Chu B J, Lu S G, Zhang Q M 2008 Science 321 821
Google Scholar
[28] Zhu L, Wang Q 2012 Macromolecules 45 2937
Google Scholar
[29] Naegele D, Yoon D Y, Broadhurst M G 1978 Macromolecules 11 1297
Google Scholar
[30] Lovinger A J 1983 Science 220 1115
Google Scholar
[31] Huang X Y, Sun B, Zhu Y K, Li S T, Jiang P K 2019 Prog. Mater. Sci. 100 187
Google Scholar
[32] Li H, Liu F, Fan B, Ai D, Peng Z, Wang Q 2018 Small Methods 2 1700399
Google Scholar
[33] Li W P, Jiang L, Zhang X, Shen Y, Nan C W 2014 J. Mater. Chem. A 2 15803
Google Scholar
[34] Wang J W, Shen Q D, Bao H M, Yang C Z, Zhang Q M 2005 Macromolecules 38 2247
Google Scholar
[35] Zhang L, Liu Z, Lu X, Yang G, Zhang X Y, Cheng Z Y 2016 Nano Energy 26 550
Google Scholar
[36] 赵学童, 廖瑞金, 李建英, 王飞鹏 2015 64 127701
Google Scholar
Zhao X T, Liao R J, Li J Y, Wang F P 2015 Acta Phys. Sin. 64 127701
Google Scholar
[37] 王娇, 刘少辉, 陈长青, 郝好山, 翟继卫 2020 69 217702
Google Scholar
Wang J, Liu S H, Chen C Q, Hao W S, Zhai J W 2020 Acta Phys. Sin. 69 217702
Google Scholar
[38] Zhang Y, Zhang C H, Feng Y, Zhang T D, Chen Q G, Chi Q G, Liu L Z, Li G F, Cui Y, Wang X, Dang Z M, Lei Q G 2019 Nano Energy 56 138
Google Scholar
[39] Xia W M, Xu Z, Wen F, Zhang Z C 2012 Ceram Int. 38 1071
Google Scholar
[40] Yu K, Niu Y J, Zhou Y C, Bai Y Y, Wang H 2013 J. Am. Ceram. Soc. 96 2519
Google Scholar
[41] Luo B C, Wang X H, Wang Y P, Li L T 2014 J. Mater. Chem. A 2 510
Google Scholar
[42] Feng Y, Li W L, Wang J P, Yin J H, Fei E D 2015 J. Mater. Chem. A 3 20313
Google Scholar
[43] Cho S, Lee J S, Jang J 2015 ACS Appl. Mater. Interfaces 7 9668
Google Scholar
[44] Zhang Y, Wang Y Q, Qi S J, Dunn S, Dong H S, Button T 2018 Appl. Phys. Lett. 112 202904
Google Scholar
[45] Dang Z M, Lin Y H, Nan C W 2003 Adv. Mater. 15 1625
Google Scholar
[46] He Z Z, Yu X, Yang J H, Zhang N, Huang T, Wang Y, Zhou Z W 2018 Compos. Pt. A-Appl. Sci. Manuf. 104 89
Google Scholar
[47] Tu S, Jiang Q, Zhang X X, Alshareef H N 2018 ACS Nano 12 3369
Google Scholar
[48] 王娇, 刘少辉, 周梦, 郝好山, 翟继卫 2020 69 218101
Google Scholar
Wang J, Liu S H, Zhou M, Hao W S, Zhai J W 2020 Acta Phys. Sin. 69 218101
Google Scholar
[49] Xie L Y, Huang X Y, Yang K, Li S T, Jiang P K 2014 J. Mater. Chem. A 2 5244
Google Scholar
[50] Xie Y C, Jiang W R, Fu T, Liu J J, Zhang Z C, Wang S G 2018 ACS Appl. Mater. Interfaces 10 29038
Google Scholar
[51] Zhang R R, Li L L, Long S J, Lou H Y, Wen F, Hong H, Shen Y C, Wang G F, Wu W 2021 J. Mater. Sci. Mater. Electron. 32 24248
Google Scholar
[52] Niu Y J, Bai Y Y, Yu K, Wang Y F, Xiang F, Wang H 2015 ACS Appl. Mater. Interfaces 7 24168
Google Scholar
[53] Peng W W, Zhou W Y, Li T, Zhou J J, Yao T, Wu H J, Zhao X T, Luo J, Liu J X, Zhang D L 2022 J. Mater. Sci. Mater. Electron. 33 14735
Google Scholar
[54] Pan Z B, Zhai J W, Shen B 2017 J. Mater. Chem. A 5 15217
[55] Zhang X, Shen Y, Zhang Q H, Gu L, Hu J W, Lin Y H, Nan C W 2015 Adv. Mater. 27 819
Google Scholar
[56] Zhang X, Shen Y, Xu B, Zhang Q H, Gu L, Jiang J Y, Ma J, Lin Y H, Nan C W 2016 Adv. Mater. 28 2055
Google Scholar
[57] Mackey M, Hiltner A, Baer E, Flandia L, Wolak M A, Shirk J S 2009 J. Phys. D Appl. Phys. 42 175304
Google Scholar
[58] Wolak M A, Pan M J, Wan A, Shirk J S, Mackey M, Hiltner A, Baer E, Flandin L 2008 Appl. Phys. Lett. 92 113301
Google Scholar
[59] Feng Y F, Wu Q, Deng Q H, Peng C, Hu J B, Xu Z C 2019 J. Mater. Chem. C 7 6744
Google Scholar
[60] Xie Y C, Wang J, Yu Y Y, Jiang W R, Zhang Z C 2018 Appl. Surf. Sci. 440 1150
[61] Luo H B, Pan X R, Yang J H, Qi X D, Wang Y 2022 Chin. J. Polym. Sci. 40 515
Google Scholar
[62] Sun Q Z, Wang J P, Sun H N, He L Q, Zhang L X, Mao P, Zhang X X, Kang F, Wang Z P, Kang R R, Zhang L 2021 Compos. Pt. A-Appl. Sci. Manuf. 149 106546
Google Scholar
[63] Zhang Q M, Bharti V, Zhao X 1998 Science 280 2101
Google Scholar
[64] Cheng Z Y, Olson D, Xu H S, Xia F, Hundal J S, Zhang Q M, Bateman F B, Kavarnos G J, Ramotowski T 2002 Macromolecules 35 664
Google Scholar
[65] Cheng Z Y, Zhang Q M, Bateman F B 2002 J. Appl. Phys. 92 6749
Google Scholar
[66] Bharti V, Zhang Q M 2001 Phys. Rev. B 63 184103
Google Scholar
[67] Li Z M, Arbatti M D, Cheng Z Y 2004 Macromolecules 37 79
Google Scholar
[68] Wu S, Lin M, Lu S G, Zhu L, Zhang Q M 2011 Appl. Phys. Lett. 99 132901
Google Scholar
[69] Zhang X, Shen Y, Shen Z H, Jiang J Y, Chen L Q, Nan C W 2016 ACS Appl. Mater. Interfaces 8 27236
Google Scholar
[70] Zhu Y K, Jiang P K, Huang X Y 2019 Compos. Sci. Technol. 179 115
Google Scholar
[71] Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J L, Wang Q 2018 Adv. Mater. 30 1805672
Google Scholar
[72] Joyce D M, Ouchen F, Grote J G 2016 Adv. Energy Mater. 6 1600676
Google Scholar
[73] Azizi A, Gadinski M R, Li Q, Alsaud M A, Wang J J, Wang Y, Wang B, Liu F H, Chen L Q, Alem N, Wang Q 2017 Adv. Mater. 29 1701864
Google Scholar
[74] Thakur Y, Lean M H, Zhang Q M 2017 Appl. Phys. Lett. 110 122905
Google Scholar
[75] Wang R, Xu H S, Cheng S, Liang J J, Gou B, Zhou J G, Fu J, Xie C Z, He J L, Li Q 2022 Energy Storage Mater. 49 339
Google Scholar
[76] Nie R P, Li Y, Jia L C, Lei J, Huang H D, Li Z M 2019 J. Polym. Sci. Pt. B-Polym. Phys. 57 1043
Google Scholar
[77] Huang H D, Chen X Y, Yin K Z, Treufeld I, Schuele D E, Ponting M, Langhe D, Baer E, Zhu L 2018 ACS Appl. Energ. Mater. 1 775
Google Scholar
[78] Yang F, Zhao H, Zhang C Y, Zhang N, Zhu T G, Yin L, Bai J B 2022 J. Mater. Sci. 57 11824
Google Scholar
[79] Chen C, Xie Y C, Wang J, Lan Y, Wei X Y, Zhang Z C 2021 Appl. Surf. Sci. 535 147737
Google Scholar
[80] Li W Y, Song Z Q, Zhong J M, Qian J, Tan Z Y, Wu X Y, Chu H Y, Nie W, Ran X H 2019 J. Mater. Chem. C 7 10371
Google Scholar
[81] Zhu Y K, Zhu Y J, Huang X Y, Chen J, Li Q, He J L, Jiang P K 2019 Adv. Energy Mater. 9 1903062
Google Scholar
[82] Zhu Y K, Shen Z H, Li Y, Chai B, Chen J, Jiang P K, Huang X Y 2022 Nano-Micro Lett. 14 1
Google Scholar
-
图 9 (a) PVDF/ P(VDF-TrFE-CFE)共混膜的储能密度与充放电效率[69]; (b)不同钛酸锶钡含量下单层膜与3层膜介电损耗; (c) TNF介电损耗降低示意图[76]
Fig. 9. (a) Energy storage density and charge/discharge efficiency of PVDF/ P(VDF-TrFE-CFE) blended films[69]; (b) dielectric loss of monolayer and trilayer films with different barium strontium titanate content; (c) schematic diagram of TNF dielectric loss reduction [76]
-
[1] Yu M P, Wang A J, Tian F Y, Song H Q, Wang Y S, Li C, Hong J D, Shi G Q 2015 Nanoscale 7 5292
Google Scholar
[2] Yu M P, Li R, Tong Y, Li Y R, Li C, Hong J D, Shi G Q 2015 J. Mater. Chem. A 3 9609
Google Scholar
[3] Wang X L, Shi G Q 2015 Energy Environ. Sci. 8 790
Google Scholar
[4] Zhao Z H, Li M T, Zhang L P, Dai L M, Xia Z H 2015 Adv. Mater. 27 6834
Google Scholar
[5] Sengodan S, Choi S, Jun A, Shin T H, Ju Y W, Jeong H Y, Shin J, T J, Irvine S, Kim G 2015 Nature Mater. 14 205
Google Scholar
[6] Doan-Nguyen V V T, Zhang S, Trigg E B, Agarwal R, Li J, Su D, Winey K I, Murray C B 2015 ACS Nano 9 8108
Google Scholar
[7] Ho J, Ramprasad R, Boggs S 2007 IEEE Trns. Dielectr. Electr. Insul. 14 1295
Google Scholar
[8] Yin K, Zhou Z, Schuele D E, Wolak M, Zhu L, Baer E 2016 ACS Appl. Mater. Interfaces 8 13555
Google Scholar
[9] Xu Y, Shi G, Duan X 2015 Acc. Chem. Res. 48 1666
Google Scholar
[10] Wu Q, Xu Y, Yao Z, Liu A, Shi G Q 2010 ACS Nano 4 1963
Google Scholar
[11] Yuan K, Xu Y, Uihlein J, Brunklaus G, Shi L, Heiderhoff R, Que M M, Forster M, Chasse T, Pichler T, Riedl T, Chen Y W, Scherf U 2015 Adv. Mater. 27 6714
Google Scholar
[12] Starkweather Jr H W, Avakian P, Matheson Jr R R 1992 Macromolecules 25 6871
Google Scholar
[13] Dang Z M, Yuan J K, Yao S H, Liao R J 2013 Adv. Mater. 25 6334
Google Scholar
[14] Han K, Li Q, Chanthad C, Gadinski M R, Zhang G Z, Wang Q 2015 Adv. Funct. Mater. 25 3505
Google Scholar
[15] Diao C L, Liu H X, Lou G H, Zheng H W, Yao Z H, Hao H, Cao M H 2019 J. Alloys Compd. 781 378
Google Scholar
[16] Zhu L 2014 J. Phys. Chem. Lett. 5 3677
Google Scholar
[17] Lim J Y, Park S Y, Kwak S, Kim H J, Seo Y 2016 Polymer 97 465
Google Scholar
[18] Claude J, Lu Y Y, Li K, Wang Q 2008 Chem. Mater. 20 2078
Google Scholar
[19] Guan F X, Wang J, Pan J L, Wang Q, Zhu L 2010 Macromolecules 43 6739
Google Scholar
[20] Han R, Jin J, Khanchaitit P, Wang J K, Wang Q 2012 Polymer 53 1277
Google Scholar
[21] Gadinski M R, Han K, Li Q, Zhang G Z, Reainthippayasakul W, Wang Q 2014 ACS Appl. Mater. Interfaces 6 18981
Google Scholar
[22] Gadinski M R, Chanthad C, Han K, Dong L J, Wang Q 2014 Polym. Chem. 5 5957
Google Scholar
[23] Guan F X, Pan J L, Wang J, Wang Q, Zhu L 2010 Macromolecules 43 384
Google Scholar
[24] Chen X Z, Li X Y, Qian X S, Lu S G, Gu H M, Lin M, Shen Q D, Zhang Q M 2013 Polymer 54 2373
Google Scholar
[25] Gadinski M R, Li Q, Zhang G Z, Zhang X S, Wang Q 2015 Macromolecules 48 2731
Google Scholar
[26] Yang L Y, Tyburski B A, Dos Santos F D, Endoh M K, Koga T, Huang D, Wang Y J, Zhu L 2014 Macromolecules 47 8119
Google Scholar
[27] Neese B, Chu B J, Lu S G, Zhang Q M 2008 Science 321 821
Google Scholar
[28] Zhu L, Wang Q 2012 Macromolecules 45 2937
Google Scholar
[29] Naegele D, Yoon D Y, Broadhurst M G 1978 Macromolecules 11 1297
Google Scholar
[30] Lovinger A J 1983 Science 220 1115
Google Scholar
[31] Huang X Y, Sun B, Zhu Y K, Li S T, Jiang P K 2019 Prog. Mater. Sci. 100 187
Google Scholar
[32] Li H, Liu F, Fan B, Ai D, Peng Z, Wang Q 2018 Small Methods 2 1700399
Google Scholar
[33] Li W P, Jiang L, Zhang X, Shen Y, Nan C W 2014 J. Mater. Chem. A 2 15803
Google Scholar
[34] Wang J W, Shen Q D, Bao H M, Yang C Z, Zhang Q M 2005 Macromolecules 38 2247
Google Scholar
[35] Zhang L, Liu Z, Lu X, Yang G, Zhang X Y, Cheng Z Y 2016 Nano Energy 26 550
Google Scholar
[36] 赵学童, 廖瑞金, 李建英, 王飞鹏 2015 64 127701
Google Scholar
Zhao X T, Liao R J, Li J Y, Wang F P 2015 Acta Phys. Sin. 64 127701
Google Scholar
[37] 王娇, 刘少辉, 陈长青, 郝好山, 翟继卫 2020 69 217702
Google Scholar
Wang J, Liu S H, Chen C Q, Hao W S, Zhai J W 2020 Acta Phys. Sin. 69 217702
Google Scholar
[38] Zhang Y, Zhang C H, Feng Y, Zhang T D, Chen Q G, Chi Q G, Liu L Z, Li G F, Cui Y, Wang X, Dang Z M, Lei Q G 2019 Nano Energy 56 138
Google Scholar
[39] Xia W M, Xu Z, Wen F, Zhang Z C 2012 Ceram Int. 38 1071
Google Scholar
[40] Yu K, Niu Y J, Zhou Y C, Bai Y Y, Wang H 2013 J. Am. Ceram. Soc. 96 2519
Google Scholar
[41] Luo B C, Wang X H, Wang Y P, Li L T 2014 J. Mater. Chem. A 2 510
Google Scholar
[42] Feng Y, Li W L, Wang J P, Yin J H, Fei E D 2015 J. Mater. Chem. A 3 20313
Google Scholar
[43] Cho S, Lee J S, Jang J 2015 ACS Appl. Mater. Interfaces 7 9668
Google Scholar
[44] Zhang Y, Wang Y Q, Qi S J, Dunn S, Dong H S, Button T 2018 Appl. Phys. Lett. 112 202904
Google Scholar
[45] Dang Z M, Lin Y H, Nan C W 2003 Adv. Mater. 15 1625
Google Scholar
[46] He Z Z, Yu X, Yang J H, Zhang N, Huang T, Wang Y, Zhou Z W 2018 Compos. Pt. A-Appl. Sci. Manuf. 104 89
Google Scholar
[47] Tu S, Jiang Q, Zhang X X, Alshareef H N 2018 ACS Nano 12 3369
Google Scholar
[48] 王娇, 刘少辉, 周梦, 郝好山, 翟继卫 2020 69 218101
Google Scholar
Wang J, Liu S H, Zhou M, Hao W S, Zhai J W 2020 Acta Phys. Sin. 69 218101
Google Scholar
[49] Xie L Y, Huang X Y, Yang K, Li S T, Jiang P K 2014 J. Mater. Chem. A 2 5244
Google Scholar
[50] Xie Y C, Jiang W R, Fu T, Liu J J, Zhang Z C, Wang S G 2018 ACS Appl. Mater. Interfaces 10 29038
Google Scholar
[51] Zhang R R, Li L L, Long S J, Lou H Y, Wen F, Hong H, Shen Y C, Wang G F, Wu W 2021 J. Mater. Sci. Mater. Electron. 32 24248
Google Scholar
[52] Niu Y J, Bai Y Y, Yu K, Wang Y F, Xiang F, Wang H 2015 ACS Appl. Mater. Interfaces 7 24168
Google Scholar
[53] Peng W W, Zhou W Y, Li T, Zhou J J, Yao T, Wu H J, Zhao X T, Luo J, Liu J X, Zhang D L 2022 J. Mater. Sci. Mater. Electron. 33 14735
Google Scholar
[54] Pan Z B, Zhai J W, Shen B 2017 J. Mater. Chem. A 5 15217
[55] Zhang X, Shen Y, Zhang Q H, Gu L, Hu J W, Lin Y H, Nan C W 2015 Adv. Mater. 27 819
Google Scholar
[56] Zhang X, Shen Y, Xu B, Zhang Q H, Gu L, Jiang J Y, Ma J, Lin Y H, Nan C W 2016 Adv. Mater. 28 2055
Google Scholar
[57] Mackey M, Hiltner A, Baer E, Flandia L, Wolak M A, Shirk J S 2009 J. Phys. D Appl. Phys. 42 175304
Google Scholar
[58] Wolak M A, Pan M J, Wan A, Shirk J S, Mackey M, Hiltner A, Baer E, Flandin L 2008 Appl. Phys. Lett. 92 113301
Google Scholar
[59] Feng Y F, Wu Q, Deng Q H, Peng C, Hu J B, Xu Z C 2019 J. Mater. Chem. C 7 6744
Google Scholar
[60] Xie Y C, Wang J, Yu Y Y, Jiang W R, Zhang Z C 2018 Appl. Surf. Sci. 440 1150
[61] Luo H B, Pan X R, Yang J H, Qi X D, Wang Y 2022 Chin. J. Polym. Sci. 40 515
Google Scholar
[62] Sun Q Z, Wang J P, Sun H N, He L Q, Zhang L X, Mao P, Zhang X X, Kang F, Wang Z P, Kang R R, Zhang L 2021 Compos. Pt. A-Appl. Sci. Manuf. 149 106546
Google Scholar
[63] Zhang Q M, Bharti V, Zhao X 1998 Science 280 2101
Google Scholar
[64] Cheng Z Y, Olson D, Xu H S, Xia F, Hundal J S, Zhang Q M, Bateman F B, Kavarnos G J, Ramotowski T 2002 Macromolecules 35 664
Google Scholar
[65] Cheng Z Y, Zhang Q M, Bateman F B 2002 J. Appl. Phys. 92 6749
Google Scholar
[66] Bharti V, Zhang Q M 2001 Phys. Rev. B 63 184103
Google Scholar
[67] Li Z M, Arbatti M D, Cheng Z Y 2004 Macromolecules 37 79
Google Scholar
[68] Wu S, Lin M, Lu S G, Zhu L, Zhang Q M 2011 Appl. Phys. Lett. 99 132901
Google Scholar
[69] Zhang X, Shen Y, Shen Z H, Jiang J Y, Chen L Q, Nan C W 2016 ACS Appl. Mater. Interfaces 8 27236
Google Scholar
[70] Zhu Y K, Jiang P K, Huang X Y 2019 Compos. Sci. Technol. 179 115
Google Scholar
[71] Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J L, Wang Q 2018 Adv. Mater. 30 1805672
Google Scholar
[72] Joyce D M, Ouchen F, Grote J G 2016 Adv. Energy Mater. 6 1600676
Google Scholar
[73] Azizi A, Gadinski M R, Li Q, Alsaud M A, Wang J J, Wang Y, Wang B, Liu F H, Chen L Q, Alem N, Wang Q 2017 Adv. Mater. 29 1701864
Google Scholar
[74] Thakur Y, Lean M H, Zhang Q M 2017 Appl. Phys. Lett. 110 122905
Google Scholar
[75] Wang R, Xu H S, Cheng S, Liang J J, Gou B, Zhou J G, Fu J, Xie C Z, He J L, Li Q 2022 Energy Storage Mater. 49 339
Google Scholar
[76] Nie R P, Li Y, Jia L C, Lei J, Huang H D, Li Z M 2019 J. Polym. Sci. Pt. B-Polym. Phys. 57 1043
Google Scholar
[77] Huang H D, Chen X Y, Yin K Z, Treufeld I, Schuele D E, Ponting M, Langhe D, Baer E, Zhu L 2018 ACS Appl. Energ. Mater. 1 775
Google Scholar
[78] Yang F, Zhao H, Zhang C Y, Zhang N, Zhu T G, Yin L, Bai J B 2022 J. Mater. Sci. 57 11824
Google Scholar
[79] Chen C, Xie Y C, Wang J, Lan Y, Wei X Y, Zhang Z C 2021 Appl. Surf. Sci. 535 147737
Google Scholar
[80] Li W Y, Song Z Q, Zhong J M, Qian J, Tan Z Y, Wu X Y, Chu H Y, Nie W, Ran X H 2019 J. Mater. Chem. C 7 10371
Google Scholar
[81] Zhu Y K, Zhu Y J, Huang X Y, Chen J, Li Q, He J L, Jiang P K 2019 Adv. Energy Mater. 9 1903062
Google Scholar
[82] Zhu Y K, Shen Z H, Li Y, Chai B, Chen J, Jiang P K, Huang X Y 2022 Nano-Micro Lett. 14 1
Google Scholar
计量
- 文章访问数: 8252
- PDF下载量: 272
- 被引次数: 0