-
The Ni/Au/Al2O3/n-GaN metal-oxide-semiconductor structure with circular transparent electrode has been fabricated by using atomic layer deposition technique. Effects of ultra-violet (UV) light illumination on the capacitance characteristics and deep interface states are analyzed. Physical origin of bias-induced capacitance drop in the accumulation region of some non-ideal devices is explored. Due to the extremely long electron emission time and the extremely slow minority carrier generation rate, a typical deep depletion behavior can be observed in the dark room-temperature capacitance-voltage sweep curve, and the deep-level interface state occupancy above the electron quasi-Fermi level remains unchanged. Under the UV illumination, photo-induced holes will empty the deep interface traps above the electron quasi-Fermi level, and also de-charge the deep donor-like traps in the oxide layer. The anomalous capacitance drop in the accumulation region is attributed to the bias-dependent excessive leakage conductance across the dielectric layer, which might be induced by a charge-to-breakdown process related to electrical traps in the oxide and the inferior interface quality.
-
Keywords:
- atomic layer deposition /
- Al2O3/n-GaN /
- MOS structure /
- capacitance characteristics
[1] Kohm E, Daumiller I, Schmid P, Nguyen N X, Nguyen C N 1988 Electron. Lett. 35 1022
[2] Kumar V, Lu W, Schwindt R, Kuliev A, Simin G, Yang J, Khan M A, Adesida I 2001 IEEE Electron Device Lett. 48 465
[3] Rumyantsey S L, Pala N, Shur M S, Borovitskaya E, Dmitriew A P, Levinshtein M E, Gaska R, Khan M A, Yang J W, Hu X H, Simin G 2001 IEEE Trans. Electron Devices 48 530
[4] Koley G, Tilak V, Eastman L F, Spencer M G 2003 Electron. Lett. 50 886
[5] Kim H, Thompson R M, Tilak V, Prunty T R, Shealy J R, Eastman L F 2003 IEEE Electron Device Lett. 24 421
[6] Green B M, Chu K K, Chumbes E M, Smart J A, Shealy J R Eastman L F 2002 IEEE Electron Device Lett. 21 268
[7] vertiatchikh A, Eastman L F, Schaff W J, Prunty I 2002 Electron. Lett. 38 388
[8] Edwards A P, Mittereder J A, Binari S C, Katzer D S, Storm D F, Roussos J A 2005 IEEE Electron Device Lett. 26 225
[9] Lee J S, Vescan A, Wieszt A, Dietrich R, Leier H, Kwon Y S 2002 Electron. Lett. 37 130
[10] Higashiwaki M, Matsui T, Mimura T 2006 IEEE Electron Device Lett. 27 16
[11] Sze M, Ng K K 2006 Physics of semiconductor devices New York: Wiley 209
[12] Muller R S, Kamins T I 1986 Device Electrons for Interated Circuits New York: Wiley 443
[13] Wolters D R, Van J J 1985 Philips J. Res. 40 115
-
[1] Kohm E, Daumiller I, Schmid P, Nguyen N X, Nguyen C N 1988 Electron. Lett. 35 1022
[2] Kumar V, Lu W, Schwindt R, Kuliev A, Simin G, Yang J, Khan M A, Adesida I 2001 IEEE Electron Device Lett. 48 465
[3] Rumyantsey S L, Pala N, Shur M S, Borovitskaya E, Dmitriew A P, Levinshtein M E, Gaska R, Khan M A, Yang J W, Hu X H, Simin G 2001 IEEE Trans. Electron Devices 48 530
[4] Koley G, Tilak V, Eastman L F, Spencer M G 2003 Electron. Lett. 50 886
[5] Kim H, Thompson R M, Tilak V, Prunty T R, Shealy J R, Eastman L F 2003 IEEE Electron Device Lett. 24 421
[6] Green B M, Chu K K, Chumbes E M, Smart J A, Shealy J R Eastman L F 2002 IEEE Electron Device Lett. 21 268
[7] vertiatchikh A, Eastman L F, Schaff W J, Prunty I 2002 Electron. Lett. 38 388
[8] Edwards A P, Mittereder J A, Binari S C, Katzer D S, Storm D F, Roussos J A 2005 IEEE Electron Device Lett. 26 225
[9] Lee J S, Vescan A, Wieszt A, Dietrich R, Leier H, Kwon Y S 2002 Electron. Lett. 37 130
[10] Higashiwaki M, Matsui T, Mimura T 2006 IEEE Electron Device Lett. 27 16
[11] Sze M, Ng K K 2006 Physics of semiconductor devices New York: Wiley 209
[12] Muller R S, Kamins T I 1986 Device Electrons for Interated Circuits New York: Wiley 443
[13] Wolters D R, Van J J 1985 Philips J. Res. 40 115
Catalog
Metrics
- Abstract views: 6858
- PDF Downloads: 469
- Cited By: 0