Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Atomic layer deposition and application of group III nitrides semiconductor and their alloys

Qiu Peng Liu Heng Zhu Xiao-Li Tian Feng Du Meng-Chao Qiu Hong-Yu Chen Guan-Liang Hu Yu-Yu Kong De-Lin Yang Jin Wei Hui-Yun Peng Ming-Zeng Zheng Xin-He

Citation:

Atomic layer deposition and application of group III nitrides semiconductor and their alloys

Qiu Peng, Liu Heng, Zhu Xiao-Li, Tian Feng, Du Meng-Chao, Qiu Hong-Yu, Chen Guan-Liang, Hu Yu-Yu, Kong De-Lin, Yang Jin, Wei Hui-Yun, Peng Ming-Zeng, Zheng Xin-He
PDF
HTML
Get Citation
  • Group III nitride semiconductors, such as GaN, AlN, and InN, are an important class of compound semiconductor material, and have attracted much attention, because of their unique physicochemical properties. These semiconductors possess excellent characteristics, such as wide direct bandgap, high breakdown field strength, high electron mobility, and good stability, and thus are called third-generation semiconductors. Their alloy materials can adjust their bandgaps by changing the type or proportion of group III elements, covering a wide wavelength range from near-ultraviolet to infrared, thereby achieving wavelength selectivity in optoelectronic devices. Atomic layer deposition (ALD) is a unique technique that produces high-quality group III nitride films at low temperatures. The ALD has become an important method of preparing group III nitrides and their alloys. The alloy composition can be easily controlled by adjusting the ALD cycle ratio. This review highlights recent work on the growth and application of group III nitride semiconductors and their alloys by using ALD. The work is summarized according to similarities so as to make it easier to understand the progress and focus of related research. Firstly, this review summarizes binary nitrides with a focus on their mechanism and application. In the section on mechanism investigation, the review categorizes and summarizes the effects of ALD precursor material, substrate, temperature, ALD type, and other conditions on film quality. This demonstrates the effects of different conditions on film growth behavior and quality. The section on application exploration primarily introduces the use of group III nitride films in various devices through ALD, analyzes the enhancing effects of group III nitrides on these devices, and explores the underlying mechanisms. Additionally, this section discusses the growth of group III nitride alloys through ALD, summarizing different deposition methods and conditions. Regarding the ALD growth of group III nitride semiconductors, there is more research on the ALD growth of AlN and GaN, and less research on InN and its alloys. Additionally, there is less research on the ALD growth of GaN for applications, as it is still in the exploratory stage, while there is more research on the ALD growth of AlN for applications. Finally, this review points out the prospects and challenges of ALD in preparation of group III nitride semiconductors and their alloys.
      Corresponding author: Zheng Xin-He, xinhezheng@ustb.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0703700), the National Natural Science Foundation of China (Grant No. 52002021), and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-IDRY-GD22-001).
    [1]

    Lakshmi E 1981 Thin Solid Films 83 L137Google Scholar

    [2]

    Porowski S 1997 Mater. Sci. Eng. B 44 407Google Scholar

    [3]

    Pearton S J, Ren F, Zhang A P, Lee K P 2000 Mat. Sci. Eng. R 30 55Google Scholar

    [4]

    Glavin N R, Chabak K D, Heller E R, Moore E A, Prusnick T A, Maruyama B, Walker Jr D E, Dorsey D L, Paduano Q, Snure M 2017 Adv. Mate. 29 1701838Google Scholar

    [5]

    Mizutani H, Ishikawa R, Honjo K 2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) Miami, FL, USA, October 22–25, 2017 pp1–4

    [6]

    Bentini A, Palombini D, Rampazzo D 2017 12th European Microwave Integrated Circuits Conference (EuMIC) Nuremberg, Germany, October 8–10, 2017 pp125–128

    [7]

    Margomenos A, Kurdoghlian A, Micovic M, Shinohara K, Moyer H, Regan D C, Grabar R M, McGuire C, Wetzel M D, Chow D H 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) La Jolla, CA, USA, October 19–22, 2014 pp1–4

    [8]

    Bui H V, Wiggers F B, Gupta A, Nguyen M D, Aarnink A A I, Jong M P D, Kovalgin A Y 2015 J. Vac. Sci. Technol. A 33 01A111

    [9]

    Shur M 2019 Solid-State Electron. 155 65Google Scholar

    [10]

    Chabak K D, Walker D E, Johnson M R, Crespo A, Dabiran A M, Smith D J, Wowchak A M, Tetlak S K, Kossler M, Gillespie J K, Fitch R C, Trejo M 2011 IEEE Electr. Device Lett. 32 1677Google Scholar

    [11]

    Abd Rahman M N, Shuhaimi A, Abdul Khudus M I M, Anuar A, Zainorin M Z, Talik N A, Chanlek N, Abd Majid W H 2021 J. Electron. Mater. 50 2313Google Scholar

    [12]

    Slack G A, Tanzilli R A, Pohl R O, Vandersande J W 1987 J. Phys. Chem. Solids 48 641Google Scholar

    [13]

    Zhang Z P, Gao B, Fang Z, Wang X P, Tang Y Z, Sohn J, Wong H S P, Wong S S, Lo G Q 2015 IEEE Electr. Device Lett. 36 29Google Scholar

    [14]

    Eisele H, Schuppang J, Schnedler M, Duchamp M, Nenstiel C, Portz V, Kure T, Bügler M, Lenz A, Dähne M, Hoffmann A, Gwo S, Choi S, Speck J S, Dunin-Borkowski R E, Ebert P 2016 Phys. Rev. B 94 245201Google Scholar

    [15]

    Bhatta R P, Thoms B D, Alevli M, Dietz N 2007 Surf. Sci. 601 L120Google Scholar

    [16]

    Wang S L, Liu H X, Chen Q, Zhang H L 2016 J. Mater. Sci. Mater. El. 27 11353Google Scholar

    [17]

    Wu J, Walukiewicz W, Yu K M, III J W A, Haller E E, Lu H, Schaff W J, Saito Y, Nanishi Y 2002 Appl. Phys. Lett. 80 3967Google Scholar

    [18]

    Ciorga M, Bryja L, Misiewicz J, Paszkiewicz R, Korbutowicz R, Panek M, Paszkiewicz B, Tlaczala M 1999 Mater. Sci. Eng. B 59 16Google Scholar

    [19]

    Kalaitzakis F G, Konstantinidis G, Sygellou L, Kennou S, Ladas S, Pelekanos N T 2012 Microelectron. Eng. 90 115Google Scholar

    [20]

    Nakada Y, Aksenov I, Okumura H 1998 Appl. Phys. Lett. 73 827Google Scholar

    [21]

    Hemmingsson C, Paskov P P, Pozina G, Heuken M, Schineller B, Monemar B 2007 J. Cryst. Growth 300 32Google Scholar

    [22]

    Zhang J X, Qu Y, Chen Y Z, Uddin A, Yuan S 2005 J. Cryst. Growth 282 137Google Scholar

    [23]

    Etzkorn E V, Clarke D R 2004 Int. J. High Speed Electron. Syst. 14 63Google Scholar

    [24]

    Ozturk M K, Arslan E, Kars I, Ozcelik S, Ozbay E 2013 Mat. Sci. Semicond. Process. 16 83Google Scholar

    [25]

    Kizir S, Haider A, Biyikli N 2016 J. Vac. Sci. Technol. A 34 041511Google Scholar

    [26]

    Ozgit C, Donmez I, Alevli M, Biyikli N 2012 J. Vac. Sci. Technol. A 30 01A124Google Scholar

    [27]

    Maeng W J, Choi D W, Park J, Park J S 2015 J. Alloys Compd. 649 216Google Scholar

    [28]

    Shih H Y, Lin M C, Chen L Y, Chen M J 2014 Nanotechnology 26 014002Google Scholar

    [29]

    Lee S H, Kwon J D, Ahn J H, Park J S 2017 Ceram. Int. 43 6580Google Scholar

    [30]

    Asif Khan M, Skogman R A, Van Hove J M, Olson D T, Kuznia J N 1992 Appl. Phys. Lett. 60 1366Google Scholar

    [31]

    Karam N H, Parodos T, Colter P, McNulty D, Rowland W, Schetzina J, El-Masry N, Bedair S M 1995 Appl. Phys. Lett. 67 94Google Scholar

    [32]

    Liu S J, He Y F, Wei H Y, Qiu P, Song Y M, An Y L, Rehman A, Peng M Z, Zheng X H 2019 Chin. Phys. B 28 026801Google Scholar

    [33]

    Liu S J, Zhao G, He Y F, Wei H Y, Li Y F, Qu P, Song Y M, An Y L, Wang X Y, Wang X X, Cheng J D, Peng M Z, Zheng X H 2019 ACS Appl. Mater. Interfaces 11 35382Google Scholar

    [34]

    Liu S J, Zhao G, He Y F, Li Y F, Wei H Y, Qiu P, Wang X Y, Wang X X, Cheng J D, Peng M Z, Zaera F, Zheng X H 2020 Appl. Phys. Lett. 116 211601Google Scholar

    [35]

    Ozgit-Akgun C, Donmez I, Biyikli N 2013 ECS Trans. 58 289Google Scholar

    [36]

    Gungor N, Alevli M 2018 J. Vac. Sci. Technol. A. 36 021514Google Scholar

    [37]

    Shukla D, Mohammad A, Ilhom S, Willis B G, Okyay A K, Biyikli N 2021 J. Vac. Sci. Technol. A. 39 022406Google Scholar

    [38]

    Gungor N, Alevli M 2019 J. Vac. Sci. Technol. A. 37 050901Google Scholar

    [39]

    Deminskyi P, Hsu C W, Bakhit B, Rouf P, Pedersen H 2021 J. Vac. Sci. Technol. A. 39 012411Google Scholar

    [40]

    Lee W H, Yin Y T, Cheng P H, Shyue J J, Shiojiri M, Lin H C, Chen M J 2018 ACS Sustain. Chem. Eng. 7 487

    [41]

    Rouf P, O’Brien N J, Buttera S C, Martinovic I, Bakhit B, Martinsson E, Palisaitis J, Hsu C W, Pedersen H 2020 J. Mater. Chem. C 8 8457Google Scholar

    [42]

    Rouf P, Samii R, Rönnby K, Bakhit B, Buttera S C, Martinovic I, Ojamäe L, Hsu C W, Palisaitis J, Kessler V, Pedersen H, O’Brien N J 2021 Chem. Mater. 33 3266Google Scholar

    [43]

    He Y F, Li M L, Liu S J, Wei H Y, Ye H Y, Song Y M, Qiu P, An Y L, Peng M Z, Zheng X H 2019 Acta Metall Sin-Engl 32 1530Google Scholar

    [44]

    He Y F, Song Y M, Wei H, Qiu P, Liu H, Zhu X, Tian F, Peng M Z, Zheng X H 2023 Appl. Phys. Lett. 122 041602Google Scholar

    [45]

    He Y F, Si Z, Shi Y A, Wei H, Peng M Z, Zheng X H 2023 Mater. Lett. 350 134801Google Scholar

    [46]

    He Y F, Li M, Wei H, Song Y M, Qiu P, Peng M Z, Zheng X H 2021 Appl. Surf. Sci. 566 150684Google Scholar

    [47]

    Song Y M, He Y F, Li Y F, Wei H Y, Qiu P, Huang Q M, He Z Q, Die J H, Peng M Z, Zheng X H 2021 Cryst. Growth Des. 21 1778Google Scholar

    [48]

    Song Y M, Li Y F, He Y F, Wei H Y, Qiu P, Hu X T, Su Z L, Jiang Y, Peng M Z, Zheng X H 2022 ACS Appl. Mater. Interfaces 14 16866Google Scholar

    [49]

    Qiu P, Wei H Y, An Y L, Wu Q, Du W, Jiang Z, Zhou L, Gao C, Liu S J, He Y F, Song Y M, Peng M Z, Zheng X H 2020 Ceram. Int. 46 5765Google Scholar

    [50]

    Wei H Y, Wu J, Qiu P, Liu S J, He Y F, Peng M Z, Li D, Meng Q, Zaera F, Zheng X H 2019 J. Mater. Chem. A 7 25347Google Scholar

    [51]

    Qiu P, Wei H Y, Huang Q, Yu M, Hu Y, Zhu X, Liu H, Zheng X H 2023 Ceram. Int. 49 22030Google Scholar

    [52]

    Lee Y J, Kang S W 2004 Thin Solid Films 446 227Google Scholar

    [53]

    Liu S J, Peng M Z, Hou C, He Y F, Li M, Zheng X H 2017 Nanoscale Res. Lett. 12 279Google Scholar

    [54]

    Liu S J, Li Y F, Tao J, Tang R, Zheng X H 2023 Crystals 13 910

    [55]

    Zhang X Y, Peng D C, Han J, Ren F B, Jiang S C, Tseng M C, Ruan Y J, Zuo J, Wu W Y, Wuu D S, Huang C J, Lien S Y, Zhu W Z 2023 Surf. Interface 36 102589Google Scholar

    [56]

    Schilirò E, Giannazzo F, Bongiorno C, Di Franco S, Greco G, Roccaforte F, Prystawko P, Kruszewski P, Leszczyński M, Krysko M, Michon A, Cordier Y, Cora I, Pecz B, Gargouri H, Nigro R L 2019 Mat. Sci. Semicond. Process. 97 35Google Scholar

    [57]

    Gungor N, Alevli M 2022 J. Vac. Sci. Technol. A 40 022404Google Scholar

    [58]

    Strnad N A, Sarney W L, Rayner G B, Benoit R R, Fox G R, Rudy R Q, Larrabee T J, Shallenberger J, Pulskamp J S 2022 J. Vac. Sci. Technol. A 40 042403Google Scholar

    [59]

    Tian L, Ponton S, Benz M, Crisci A, Reboud R, Giusti G, Volpi F, Rapenne L, Vallée C, Pons M, Mantoux A, Jiménez C, Blanquet E 2018 Surf. Coat. Technol. 347 181Google Scholar

    [60]

    Kao W C, Lee W H, Yi S H, Shen T H, Lin H C, Chen M J 2019 RSC Adv. 9 12226Google Scholar

    [61]

    Seppanen H, Kim I, Etula J, Ubyivovk E, Bouravleuv A, Lipsanen H 2019 Materials 12 610

    [62]

    Kot M, Henkel K, Naumann F, Gargouri H, Lupina L, Wilker V, Kus P, Poz´arowska E, Garain S, Rouissi Z, Schmeißer D 2019 J. Vac. Sci. Technol. A 37 020913

    [63]

    Dallaev R, Sobola D, Tofel P, Škvarenina Ľ, Sedlák P 2020 Coatings 10 954

    [64]

    Legallais M, Mehdi H, David S, Bassani F, Labau S, Pelissier B, Baron T, Martinez E, Ghibaudo G, Salem B 2020 ACS Appl. Mater. Interfaces 12 39870Google Scholar

    [65]

    Mohammad A, Shukla D, Ilhom S, Willis B, Johs B, Okyay A K, Biyikli N 2019 J. Vac. Sci. Technol. A 37 020927Google Scholar

    [66]

    Ilhom S, Shukla D, Mohammad A, Grasso J, Willis B, Biyikli N 2020 J. Vac. Sci. Technol. A 38 022405Google Scholar

    [67]

    Yun H J, Kim H, Choi B J 2020 Ceram. Int. 46 13372Google Scholar

    [68]

    Jung Y C, Hwang S M, Le D N, Kondusamy A L N, Mohan J, Kim S W, Kim J H, Lucero A T, Ravichandran A, Kim H S, Kim S J, Choi R, Ahn J, Alvarez D, Spiegelman J, Kim J 2020 Materials 13 3387Google Scholar

    [69]

    Parkhomenko R G, De Luca O, Kolodziejczyk L, Modin E, Rudolf P, Martinez Martinez D, Cunha L, Knez M 2021 Dalton Trans. 50 15062Google Scholar

    [70]

    Tiwari C, Dixit A 2021 Appl. Phys. A 127 862

    [71]

    Liu X Y, Zhao S X, Zhang L Q, Huang H F, Shi J S, Zhang C M, Lu H L, Wang P F, Zhang D W 2015 Nanoscale Res. Lett. 10 109Google Scholar

    [72]

    Zhang L Q, Wang P F 2018 Jpn. J. Appl. Phys. 57 096502Google Scholar

    [73]

    Tzou A J, Chu K H, Lin I F, Ostreng E, Fang Y S, Wu X P, Wu B W, Shen C H, Shieh J M, Yeh W K, Chang C Y, Kuo H C 2017 Nanoscale Res. Lett. 12 315Google Scholar

    [74]

    Zhao S X, Liu X Y, Zhang L Q, Huang H F, Shi J S, Wang P F 2016 Nanoscale Res. Lett. 11 137Google Scholar

    [75]

    Kim K, Hua M, Liu D, Kim J, Chen K J, Ma Z 2018 Nano Energy 43 259Google Scholar

    [76]

    Chen S W H, Yang D R, You N J, Ho W C, Tzou J, Kuo H C, Shieh J M 2021 IEEE Trans. Nanotechnol. 20 489Google Scholar

    [77]

    Kim H, Kwon Y, Choi B J 2019 Thin Solid Films 670 41Google Scholar

    [78]

    Schiliro E, Giannazzo F, Di Franco S, Greco G, Fiorenza P, Roccaforte F, Prystawko P, Kruszewski P, Leszczynski M, Cora I, Pecz B, Fogarassy Z, Lo Nigro R 2021 Nanomaterials 11 3316Google Scholar

    [79]

    Kim H, Yun H J, Choi S, Choi B J 2020 Appl. Phys. A 126 449Google Scholar

    [80]

    Boris D R, Anderson V R, Nepal N, Johnson S D, Robinson Z R, Kozen A C, Eddy Jr. C R, Walton S G 2018 J. Vac. Sci. Technol. A 36 051503Google Scholar

    [81]

    Alevli M, Gungor N 2020 J. Vac. Sci. Technol. A 38 062407Google Scholar

    [82]

    Deminskyi P, Rouf P, Ivanov I G, Pedersen H 2019 J. Vac. Sci. Technol. A 37 020926Google Scholar

    [83]

    Ilhom S, Mohammad A, Shukla D, Grasso J, Willis B G, Okyay A K, Biyikli N 2020 RSC Adv. 10 27357Google Scholar

    [84]

    Woodward J M, Rosenberg S G, Boris D R, Johnson M J, Walton S G, Johnson S D, Robinson Z R, Nepal N, Ludwig K F, Hite J K, Eddy C R 2022 J. Vac. Sci. Technol. A 40 062405Google Scholar

    [85]

    Rouf P, O’Brien N J, Rönnby K, Samii R, Ivanov I G, Ojamäe L, Pedersen H 2019 J. Phys. Chem. C 123 25691Google Scholar

    [86]

    O’Brien N J, Rouf P, Samii R, Rönnby K, Buttera S C, Hsu C-W, Ivanov I G, Kessler V, Ojamäe L, Pedersen H 2020 Chem. Mater. 32 4481Google Scholar

    [87]

    Feng X C, Peng H, Gong J H, Wang W, Liu H, Quan Z J, Pan S, Wang L 2018 J. Appl. Phys. 124 243104Google Scholar

    [88]

    Peng H, Feng X C, Gong J H, Wang W, Liu H, Quan Z J, Pan S, Wang L 2018 Appl. Surf. Sci. 459 830Google Scholar

    [89]

    Woodward J M, Rosenberg S G, Kozen A C, Nepal N, Johnson S D, Wagenbach C, Rowley A H, Robinson Z R, Joress H, Ludwig K F, Eddy C R 2019 J. Vac. Sci. Technol. A 37 030901Google Scholar

    [90]

    Hsu C W, Deminskyi P, Martinovic I, Ivanov I G, Palisaitis J, Pedersen H 2020 Appl. Phys. Lett. 117 093101Google Scholar

    [91]

    An Y L, He Y F, Wei H Y, Liu S J, Li M, Song Y M, Qiu P, Rehman A, Zheng X H, Peng M Z 2019 Results Phys. 12 804Google Scholar

    [92]

    Ho I H, Stringfellow G B 1996 MRS Online Proc. Libr. 449 871Google Scholar

    [93]

    Surender S, Prabakaran K, Loganathan R, Pradeep S, Singh S, Baskar K 2017 J. Cryst. Growth 468 249Google Scholar

    [94]

    Huang Y 2012 J. Photon. Energy 2 028501Google Scholar

    [95]

    Haider A, Kizir S, Ozgit-Akgun C, Goldenberg E, Leghari S A, Okyay A K, Biyikli N 2015 J. Mater. Chem. C 3 9620Google Scholar

    [96]

    Rouf P, Palisaitis J, Bakhit B, O'Brien N J, Pedersen H 2021 J. Mater. Chem. C 9 13077Google Scholar

    [97]

    Ozgit-Akgun C, Goldenberg E, Okyay A K, Biyikli N 2014 J. Mater. Chem. C 2 2123Google Scholar

    [98]

    Nepal N, Anderson V R, Hite J K, Eddy C R 2015 Thin Solid Films 589 47Google Scholar

    [99]

    Portillo M C, Gallardo Hernández S, Panecatl Bernal Y, Martinez Velis I, Villanueva Cab J, Alcántara S, Alvarado J 2020 Opt. Mater. 108 110206Google Scholar

    [100]

    Choi S, Ansari A S, Yun H J, Kim H, Shong B, Choi B J 2021 J. Alloy. Compd. 854 157186Google Scholar

    [101]

    Kim H, Choi S, Choi B J 2020 Coatings 10 194Google Scholar

    [102]

    Kim H, Choi S, Choi B J 2020 Coatings 10 489Google Scholar

    [103]

    Kim H, Yun H J, Choi S, Choi B J 2020 Mater. Trans. 61 88Google Scholar

  • 图 1  等离子体增强原子层沉积沉积GaN的示意图

    Figure 1.  Schematic diagram of GaN deposited by plasma-enhanced atomic layer deposition.

    图 2  (a)未经预处理的氮化镓薄膜的GIXRD曲线; (b) 预处理样品的XRD曲线; (c) (002) GaN峰的XRD ω扫描摇摆曲线; (d), (e)未经预处理和预处理的GaN/蓝宝石界面的HRTEM图像; (f) 预处理和未预处理的氮化镓的初始生长示意图; (g) 预处理的GaN薄膜的选区电子衍射图. 氮化镓是外延的, 存在$\left[ {1\bar 10} \right]$氮化镓//[100]蓝宝石平面排列; (h) 图(b)中黄色矩形所包围的GaN/蓝宝石界面区域的放大图[34]

    Figure 2.  (a) GIXRD patterns of the non-pretreated GaN thin film; (b) XRD patterns and (c) XRD ω-scan rocking curve of the (002) GaN peak of the pretreated sample; (d), (e) HRTEM images of the non-pretreated and pretreated GaN/sapphire interfaces, respectively; (f) the schematic diagram of the initial growth of pretreated and non-pretreated GaN; (g) selected area electron diffraction of the pretreated GaN thin film, GaN is epitaxial, with a $\left[ {1\bar 10} \right]$GaN//[100]sapphire plane alignment; (h) magnification of the GaN/sapphire interface region enclosed by the yellow rectangle in panel (b) [34].

    图 3  实时测量的和平均原位椭圆光度法薄膜厚度数据显示, 即在衬底温度为(a) 120 , (b) 160, (c) 200和(d) 240 ℃时, TMG化学吸附和N2/H2/Ar等离子体辅助配体去除反应的等离子体射频功率相关性[37]

    Figure 3.  Real-time measured and averaged in situ ellipsometric film thickness data showing the plasma rf-power dependence of TMG chemisorption and N2/H2/Ar plasma-assisted ligand removal reactions at substrate temperatures of (a) 120, (b) 160, (c) 200 and (d) 240 ℃[37].

    图 4  (a) H2O和(b) NH3预处理后的成核示意图. 蓝色区域、红色区域和a*分别代表完全羟基化状态、较高能量状态和反应性部位, 如离解的NH3[67]

    Figure 4.  Schematics of nucleation after (a) H2O and (b) NH3 pretreatment. The blue region, the red region and a* represent the fully hydroxylated state, a higher energy state, and a reactive site such as dissociated NH3, respectively[67].

    图 5  (a) 用于InN的ALD研究的三种六价In(III)前体1—3; (b)前体3的改进的表面化学示意图, 显示与(c)前体2相比, 其iPr基团的立体和表面排斥力下降[85]

    Figure 5.  (a) Hexacoordinated In(III) precursors 1–3 used for the ALD study of InN; schematics of the suggested improved surface chemistry for (b) precursor 3, showing the decrease in steric and surface repulsion of its iPr groups in comparison to (c) precursor 2[85].

    图 6  数字合金化的示意图

    Figure 6.  Schematic diagram of digital alloying.

    表 1  使用ALD沉积III族二元氮化物薄膜的生长条件概述, 包括薄膜生长和器件应用

    Table 1.  Overview of growth conditions for the deposition of group III binary nitride films using ALD, including film growth and device applications.

    材料 金属前驱体 氮前驱体 沉积温度/ ℃ 沉积衬底 应用 ALD类型 等离子体功率/W 参考文献
    GaNTEGAr/N2/H2 (1∶3∶6)350Si (100)薄膜生长PE-ALD60[32]
    GaNTEGAr/N2/H2 (1∶3∶6)350Si (100)薄膜生长PE-ALD60[33]
    GaNTEGAr/N2/H2 (1∶3∶6)350c-sapphire薄膜生长PE-ALD60[34]
    GaNTEGN2/H2200Si (100)薄膜生长HCPA-ALD300[36]
    GaNTMGN2/H2120—240Si (100)薄膜生长HCP-ALD50—250[37]
    GaNTEGN2/H2200sapphire薄膜生长HCPA-ALD300[38]
    GaNTEGNH3/Ar160—350Si (100)薄膜生长PE-ALD2000[39]
    GaNTEGN2/H2300sapphire (0001)薄膜生长PE-ALD50和 300[40]
    GaNGa(NMe2)3NH3/Ar130—250Si (100)
    4H-SiC (0002)
    薄膜生长PE-ALD2800[41]
    GaNGa(NMe2)3NH3/Ar130—250Si (100), 4H-SiC (0002)薄膜生长PE-ALD2800[42]
    GaNTEGAr/N2/H2 (1∶3∶6)350multilayer graphene薄膜生长PE-ALD60[43]
    GaNTEGAr/N2/H2 (1∶3∶6)300graphene薄膜生长PE-ALD60[44]
    GaNTEGAr/N2/H2 (1∶3∶6)≤290stainless steel薄膜生长PE-ALD60[45]
    GaNTEGAr/N2/H2 (1∶3∶6)200—300Kapton薄膜生长PE-ALD60[46]
    GaNTEGAr/N2/H2 (1∶3∶6)260MoS2薄膜生长PE-ALD60[47]
    GaNTEGAr/N2/H2 (1∶3∶6)260, 320MoS2薄膜生长PE-ALD60[48]
    GaNTEGAr/N2/H2 (1∶3∶6)280FTO薄膜生长PE-ALD60[49]
    GaNTEGAr/N2/H2 (1∶3∶6)280FTO钙钛矿太阳能电池PE-ALD60[50]
    GaNTEGAr/N2/H2 (1∶3∶6)200—280量子点太阳能电池PE-ALD60[51]
    AlNAlCl3NH3/Ar/H2350p-Si (100)薄膜生长PE-ALD150[52]
    AlNTMAAr/N2/H2 (1∶3∶6)350—300Si (100)薄膜生长PE-ALD60[53]
    AlNTMAAr/N2/H2 (1∶3∶6)250Si (100), Si (111)
    sapphire
    薄膜生长PE-ALD60[54]
    AlNTMANH3200—300Si, sapphire薄膜生长PE-ALD2500[55]
    AlNTMANH3300GaN薄膜生长PE-ALD200[56]
    AlNTMAN2/H2200Si (100)薄膜生长PE-ALD300[57]
    AlNTMAAr/N2300(Homemade substrates)MEMSPE-ALD975[58]
    AlNTMAH2 plasma, NH3325—350SiC薄膜生长PE-ALD1800[59]
    TMANH3325—400SiCT-ALD
    AlNTMAN2/H23004H-SiC薄膜生长PE-ALD50—300[60]
    AlNTMANH3 (Ar)300Si (100), Si (111)薄膜生长PE-ALD100, 200[61]
    AlNTMANH3350Si薄膜生长PE-ALD(ICP)200
    600
    [62]
    PE-ALD(CCP)200
    AlNAl(C4H9)3N2H5Cl200—350薄膜生长T-ALD[63]
    AlNTMAN2/H2300Si (100)薄膜生长, 电容器PE-ALD300[64]
    AlNTMAAr/N2/H2100—250Si (100)薄膜生长HCPA-ALD25—200[65]
    AlNTMAAr/N2/H2100—250Si (100)薄膜生长HCPA-ALD25—200[66]
    AlNTMANH3295—342Si, TiN薄膜生长T-ALD[67]
    AlNTMAN2H4175—350p-Si薄膜生长T-ALD[68]
    AlNTMAMonomethylhydrazine(MMH)375—475Si (100)薄膜生长T-ALD[69]
    AlN三(二甲氨基)铝NH3300p-Si薄膜生长T-ALD[70]
    AlNTMANH3400GaN/AlGaNMIS-HEMTT-ALD[71]
    AlNTMANH3360GaNMIS-HEMTT-ALD[72]
    AlNTMAN2 & NH3300, 350AlGaNHEMTPE-ALD2800[73]
    AlNTMANH3400AlGaNHEMTT-ALD[74]
    AlNTMAN2/H2300p-GaNLEDPE-ALD[75]
    AlNTMAN2350AlGaNSchottky diodesPE-ALD2800[76]
    AlNTMANH3340GaN异质结T-ALD[77]
    AlNTMANH3300GaN薄膜生长, 异质结PE-ALD200[78]
    AlNTMANH3335c-sapphire异质结T-ALD[79]
    InNTMIAr/N2250 ± 20sapphire薄膜生长PE-ALD300[80]
    InNTMIN2/H2200sapphire薄膜生长HCPA-ALD300[81]
    InNTMINH3240—320Si (100)薄膜生长PE-ALD2400—2800[82]
    InNTMIN2, Ar/N2, Ar/N2/H2120—240Si (100)薄膜生长HCP-ALD50—200[83]
    InNTMIN2/Ar250GaN (0001)薄膜生长PE-ALD300[84]
    InNTris (N, N-dimethyl-N', N''-diisopropylguanidinato)
    indium (III), Tris (N, N'-diisopropylamidinato) indium
    (III), Tris(N, N'-diisopropylformamidinato) indium (III)
    Ar/NH3200—280Si (100)薄膜生长PE-ALD2800[85]
    InNTris(1,3-diisopropyltriazenide)
    indium (III)
    NH3(Ar/NH3)200—400Si, 4H-SiC薄膜生长PE-ALD2800[86]
    InNTMIN2190—310Si (100), Al2O3 (0001), ZnO (0001)薄膜生长PE-ALD100—200[87]
    InNTMIN2(Ar)150—300glass, polyimide薄膜生长PE-ALD200[88]
    InNTMIN2180—320GaN (0001)薄膜生长PE-ALD300[89]
    InNTMINH3/Ar3204H-SiC薄膜生长PE-ALD2800[90]
    InNTMIAr/N2/H2(1∶3∶6)200—300Si (100)薄膜生长PE-ALD60[91]
    DownLoad: CSV

    表 2  使用ALD沉积III族氮化物合金薄膜的生长条件概述, 包括薄膜生长和器件应用.

    Table 2.  Overview of growth conditions for the deposition of group III nitride alloy films using ALD, including film growth and device applications.

    材料金属前驱体氮前驱体沉积温度/ ℃沉积衬底应用ALD类型等离子体功率/W参考文献
    InGaNTMI, TEGN2/H2, N2200Si, quartz薄膜生长HCPA-ALD300[95]
    InGaNGa(III) and In(III) triazenidesNH3/Ar350Si (100)
    4H-SiC (0001)
    薄膜生长PE-ALD2800[96]
    AlGaNTMA, TMGNH3/N2/H2200Si (100), Si (111), c-sapphire薄膜生长HCPA-ALD300[97]
    AlGaNTMA, TMI, TMGN2/Ar350—450Si (100), a-sapphire, GaN/a-sapphire薄膜生长PE-ALD300[98]
    InAlN340—300
    InGaN
    AlGaN
    InGaN
    TMG, TMA, TMIN2/H2220—300Si薄膜生长PE-ALD280[99]
    AlGaNTMA&TEGNH3 & N2342p-Si (100), TiN/SiO2/Si薄膜生长T-ALD[100]
    AlGaNTMA, TEGNH3335c-GaN异质结ALD[101]
    AlGaNTMA. TEGNH3335c-GaN异质结T-ALD[102]
    AlGaNTEGNH3335 ℃GaN异质结T-ALD[103]
    DownLoad: CSV
    Baidu
  • [1]

    Lakshmi E 1981 Thin Solid Films 83 L137Google Scholar

    [2]

    Porowski S 1997 Mater. Sci. Eng. B 44 407Google Scholar

    [3]

    Pearton S J, Ren F, Zhang A P, Lee K P 2000 Mat. Sci. Eng. R 30 55Google Scholar

    [4]

    Glavin N R, Chabak K D, Heller E R, Moore E A, Prusnick T A, Maruyama B, Walker Jr D E, Dorsey D L, Paduano Q, Snure M 2017 Adv. Mate. 29 1701838Google Scholar

    [5]

    Mizutani H, Ishikawa R, Honjo K 2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) Miami, FL, USA, October 22–25, 2017 pp1–4

    [6]

    Bentini A, Palombini D, Rampazzo D 2017 12th European Microwave Integrated Circuits Conference (EuMIC) Nuremberg, Germany, October 8–10, 2017 pp125–128

    [7]

    Margomenos A, Kurdoghlian A, Micovic M, Shinohara K, Moyer H, Regan D C, Grabar R M, McGuire C, Wetzel M D, Chow D H 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) La Jolla, CA, USA, October 19–22, 2014 pp1–4

    [8]

    Bui H V, Wiggers F B, Gupta A, Nguyen M D, Aarnink A A I, Jong M P D, Kovalgin A Y 2015 J. Vac. Sci. Technol. A 33 01A111

    [9]

    Shur M 2019 Solid-State Electron. 155 65Google Scholar

    [10]

    Chabak K D, Walker D E, Johnson M R, Crespo A, Dabiran A M, Smith D J, Wowchak A M, Tetlak S K, Kossler M, Gillespie J K, Fitch R C, Trejo M 2011 IEEE Electr. Device Lett. 32 1677Google Scholar

    [11]

    Abd Rahman M N, Shuhaimi A, Abdul Khudus M I M, Anuar A, Zainorin M Z, Talik N A, Chanlek N, Abd Majid W H 2021 J. Electron. Mater. 50 2313Google Scholar

    [12]

    Slack G A, Tanzilli R A, Pohl R O, Vandersande J W 1987 J. Phys. Chem. Solids 48 641Google Scholar

    [13]

    Zhang Z P, Gao B, Fang Z, Wang X P, Tang Y Z, Sohn J, Wong H S P, Wong S S, Lo G Q 2015 IEEE Electr. Device Lett. 36 29Google Scholar

    [14]

    Eisele H, Schuppang J, Schnedler M, Duchamp M, Nenstiel C, Portz V, Kure T, Bügler M, Lenz A, Dähne M, Hoffmann A, Gwo S, Choi S, Speck J S, Dunin-Borkowski R E, Ebert P 2016 Phys. Rev. B 94 245201Google Scholar

    [15]

    Bhatta R P, Thoms B D, Alevli M, Dietz N 2007 Surf. Sci. 601 L120Google Scholar

    [16]

    Wang S L, Liu H X, Chen Q, Zhang H L 2016 J. Mater. Sci. Mater. El. 27 11353Google Scholar

    [17]

    Wu J, Walukiewicz W, Yu K M, III J W A, Haller E E, Lu H, Schaff W J, Saito Y, Nanishi Y 2002 Appl. Phys. Lett. 80 3967Google Scholar

    [18]

    Ciorga M, Bryja L, Misiewicz J, Paszkiewicz R, Korbutowicz R, Panek M, Paszkiewicz B, Tlaczala M 1999 Mater. Sci. Eng. B 59 16Google Scholar

    [19]

    Kalaitzakis F G, Konstantinidis G, Sygellou L, Kennou S, Ladas S, Pelekanos N T 2012 Microelectron. Eng. 90 115Google Scholar

    [20]

    Nakada Y, Aksenov I, Okumura H 1998 Appl. Phys. Lett. 73 827Google Scholar

    [21]

    Hemmingsson C, Paskov P P, Pozina G, Heuken M, Schineller B, Monemar B 2007 J. Cryst. Growth 300 32Google Scholar

    [22]

    Zhang J X, Qu Y, Chen Y Z, Uddin A, Yuan S 2005 J. Cryst. Growth 282 137Google Scholar

    [23]

    Etzkorn E V, Clarke D R 2004 Int. J. High Speed Electron. Syst. 14 63Google Scholar

    [24]

    Ozturk M K, Arslan E, Kars I, Ozcelik S, Ozbay E 2013 Mat. Sci. Semicond. Process. 16 83Google Scholar

    [25]

    Kizir S, Haider A, Biyikli N 2016 J. Vac. Sci. Technol. A 34 041511Google Scholar

    [26]

    Ozgit C, Donmez I, Alevli M, Biyikli N 2012 J. Vac. Sci. Technol. A 30 01A124Google Scholar

    [27]

    Maeng W J, Choi D W, Park J, Park J S 2015 J. Alloys Compd. 649 216Google Scholar

    [28]

    Shih H Y, Lin M C, Chen L Y, Chen M J 2014 Nanotechnology 26 014002Google Scholar

    [29]

    Lee S H, Kwon J D, Ahn J H, Park J S 2017 Ceram. Int. 43 6580Google Scholar

    [30]

    Asif Khan M, Skogman R A, Van Hove J M, Olson D T, Kuznia J N 1992 Appl. Phys. Lett. 60 1366Google Scholar

    [31]

    Karam N H, Parodos T, Colter P, McNulty D, Rowland W, Schetzina J, El-Masry N, Bedair S M 1995 Appl. Phys. Lett. 67 94Google Scholar

    [32]

    Liu S J, He Y F, Wei H Y, Qiu P, Song Y M, An Y L, Rehman A, Peng M Z, Zheng X H 2019 Chin. Phys. B 28 026801Google Scholar

    [33]

    Liu S J, Zhao G, He Y F, Wei H Y, Li Y F, Qu P, Song Y M, An Y L, Wang X Y, Wang X X, Cheng J D, Peng M Z, Zheng X H 2019 ACS Appl. Mater. Interfaces 11 35382Google Scholar

    [34]

    Liu S J, Zhao G, He Y F, Li Y F, Wei H Y, Qiu P, Wang X Y, Wang X X, Cheng J D, Peng M Z, Zaera F, Zheng X H 2020 Appl. Phys. Lett. 116 211601Google Scholar

    [35]

    Ozgit-Akgun C, Donmez I, Biyikli N 2013 ECS Trans. 58 289Google Scholar

    [36]

    Gungor N, Alevli M 2018 J. Vac. Sci. Technol. A. 36 021514Google Scholar

    [37]

    Shukla D, Mohammad A, Ilhom S, Willis B G, Okyay A K, Biyikli N 2021 J. Vac. Sci. Technol. A. 39 022406Google Scholar

    [38]

    Gungor N, Alevli M 2019 J. Vac. Sci. Technol. A. 37 050901Google Scholar

    [39]

    Deminskyi P, Hsu C W, Bakhit B, Rouf P, Pedersen H 2021 J. Vac. Sci. Technol. A. 39 012411Google Scholar

    [40]

    Lee W H, Yin Y T, Cheng P H, Shyue J J, Shiojiri M, Lin H C, Chen M J 2018 ACS Sustain. Chem. Eng. 7 487

    [41]

    Rouf P, O’Brien N J, Buttera S C, Martinovic I, Bakhit B, Martinsson E, Palisaitis J, Hsu C W, Pedersen H 2020 J. Mater. Chem. C 8 8457Google Scholar

    [42]

    Rouf P, Samii R, Rönnby K, Bakhit B, Buttera S C, Martinovic I, Ojamäe L, Hsu C W, Palisaitis J, Kessler V, Pedersen H, O’Brien N J 2021 Chem. Mater. 33 3266Google Scholar

    [43]

    He Y F, Li M L, Liu S J, Wei H Y, Ye H Y, Song Y M, Qiu P, An Y L, Peng M Z, Zheng X H 2019 Acta Metall Sin-Engl 32 1530Google Scholar

    [44]

    He Y F, Song Y M, Wei H, Qiu P, Liu H, Zhu X, Tian F, Peng M Z, Zheng X H 2023 Appl. Phys. Lett. 122 041602Google Scholar

    [45]

    He Y F, Si Z, Shi Y A, Wei H, Peng M Z, Zheng X H 2023 Mater. Lett. 350 134801Google Scholar

    [46]

    He Y F, Li M, Wei H, Song Y M, Qiu P, Peng M Z, Zheng X H 2021 Appl. Surf. Sci. 566 150684Google Scholar

    [47]

    Song Y M, He Y F, Li Y F, Wei H Y, Qiu P, Huang Q M, He Z Q, Die J H, Peng M Z, Zheng X H 2021 Cryst. Growth Des. 21 1778Google Scholar

    [48]

    Song Y M, Li Y F, He Y F, Wei H Y, Qiu P, Hu X T, Su Z L, Jiang Y, Peng M Z, Zheng X H 2022 ACS Appl. Mater. Interfaces 14 16866Google Scholar

    [49]

    Qiu P, Wei H Y, An Y L, Wu Q, Du W, Jiang Z, Zhou L, Gao C, Liu S J, He Y F, Song Y M, Peng M Z, Zheng X H 2020 Ceram. Int. 46 5765Google Scholar

    [50]

    Wei H Y, Wu J, Qiu P, Liu S J, He Y F, Peng M Z, Li D, Meng Q, Zaera F, Zheng X H 2019 J. Mater. Chem. A 7 25347Google Scholar

    [51]

    Qiu P, Wei H Y, Huang Q, Yu M, Hu Y, Zhu X, Liu H, Zheng X H 2023 Ceram. Int. 49 22030Google Scholar

    [52]

    Lee Y J, Kang S W 2004 Thin Solid Films 446 227Google Scholar

    [53]

    Liu S J, Peng M Z, Hou C, He Y F, Li M, Zheng X H 2017 Nanoscale Res. Lett. 12 279Google Scholar

    [54]

    Liu S J, Li Y F, Tao J, Tang R, Zheng X H 2023 Crystals 13 910

    [55]

    Zhang X Y, Peng D C, Han J, Ren F B, Jiang S C, Tseng M C, Ruan Y J, Zuo J, Wu W Y, Wuu D S, Huang C J, Lien S Y, Zhu W Z 2023 Surf. Interface 36 102589Google Scholar

    [56]

    Schilirò E, Giannazzo F, Bongiorno C, Di Franco S, Greco G, Roccaforte F, Prystawko P, Kruszewski P, Leszczyński M, Krysko M, Michon A, Cordier Y, Cora I, Pecz B, Gargouri H, Nigro R L 2019 Mat. Sci. Semicond. Process. 97 35Google Scholar

    [57]

    Gungor N, Alevli M 2022 J. Vac. Sci. Technol. A 40 022404Google Scholar

    [58]

    Strnad N A, Sarney W L, Rayner G B, Benoit R R, Fox G R, Rudy R Q, Larrabee T J, Shallenberger J, Pulskamp J S 2022 J. Vac. Sci. Technol. A 40 042403Google Scholar

    [59]

    Tian L, Ponton S, Benz M, Crisci A, Reboud R, Giusti G, Volpi F, Rapenne L, Vallée C, Pons M, Mantoux A, Jiménez C, Blanquet E 2018 Surf. Coat. Technol. 347 181Google Scholar

    [60]

    Kao W C, Lee W H, Yi S H, Shen T H, Lin H C, Chen M J 2019 RSC Adv. 9 12226Google Scholar

    [61]

    Seppanen H, Kim I, Etula J, Ubyivovk E, Bouravleuv A, Lipsanen H 2019 Materials 12 610

    [62]

    Kot M, Henkel K, Naumann F, Gargouri H, Lupina L, Wilker V, Kus P, Poz´arowska E, Garain S, Rouissi Z, Schmeißer D 2019 J. Vac. Sci. Technol. A 37 020913

    [63]

    Dallaev R, Sobola D, Tofel P, Škvarenina Ľ, Sedlák P 2020 Coatings 10 954

    [64]

    Legallais M, Mehdi H, David S, Bassani F, Labau S, Pelissier B, Baron T, Martinez E, Ghibaudo G, Salem B 2020 ACS Appl. Mater. Interfaces 12 39870Google Scholar

    [65]

    Mohammad A, Shukla D, Ilhom S, Willis B, Johs B, Okyay A K, Biyikli N 2019 J. Vac. Sci. Technol. A 37 020927Google Scholar

    [66]

    Ilhom S, Shukla D, Mohammad A, Grasso J, Willis B, Biyikli N 2020 J. Vac. Sci. Technol. A 38 022405Google Scholar

    [67]

    Yun H J, Kim H, Choi B J 2020 Ceram. Int. 46 13372Google Scholar

    [68]

    Jung Y C, Hwang S M, Le D N, Kondusamy A L N, Mohan J, Kim S W, Kim J H, Lucero A T, Ravichandran A, Kim H S, Kim S J, Choi R, Ahn J, Alvarez D, Spiegelman J, Kim J 2020 Materials 13 3387Google Scholar

    [69]

    Parkhomenko R G, De Luca O, Kolodziejczyk L, Modin E, Rudolf P, Martinez Martinez D, Cunha L, Knez M 2021 Dalton Trans. 50 15062Google Scholar

    [70]

    Tiwari C, Dixit A 2021 Appl. Phys. A 127 862

    [71]

    Liu X Y, Zhao S X, Zhang L Q, Huang H F, Shi J S, Zhang C M, Lu H L, Wang P F, Zhang D W 2015 Nanoscale Res. Lett. 10 109Google Scholar

    [72]

    Zhang L Q, Wang P F 2018 Jpn. J. Appl. Phys. 57 096502Google Scholar

    [73]

    Tzou A J, Chu K H, Lin I F, Ostreng E, Fang Y S, Wu X P, Wu B W, Shen C H, Shieh J M, Yeh W K, Chang C Y, Kuo H C 2017 Nanoscale Res. Lett. 12 315Google Scholar

    [74]

    Zhao S X, Liu X Y, Zhang L Q, Huang H F, Shi J S, Wang P F 2016 Nanoscale Res. Lett. 11 137Google Scholar

    [75]

    Kim K, Hua M, Liu D, Kim J, Chen K J, Ma Z 2018 Nano Energy 43 259Google Scholar

    [76]

    Chen S W H, Yang D R, You N J, Ho W C, Tzou J, Kuo H C, Shieh J M 2021 IEEE Trans. Nanotechnol. 20 489Google Scholar

    [77]

    Kim H, Kwon Y, Choi B J 2019 Thin Solid Films 670 41Google Scholar

    [78]

    Schiliro E, Giannazzo F, Di Franco S, Greco G, Fiorenza P, Roccaforte F, Prystawko P, Kruszewski P, Leszczynski M, Cora I, Pecz B, Fogarassy Z, Lo Nigro R 2021 Nanomaterials 11 3316Google Scholar

    [79]

    Kim H, Yun H J, Choi S, Choi B J 2020 Appl. Phys. A 126 449Google Scholar

    [80]

    Boris D R, Anderson V R, Nepal N, Johnson S D, Robinson Z R, Kozen A C, Eddy Jr. C R, Walton S G 2018 J. Vac. Sci. Technol. A 36 051503Google Scholar

    [81]

    Alevli M, Gungor N 2020 J. Vac. Sci. Technol. A 38 062407Google Scholar

    [82]

    Deminskyi P, Rouf P, Ivanov I G, Pedersen H 2019 J. Vac. Sci. Technol. A 37 020926Google Scholar

    [83]

    Ilhom S, Mohammad A, Shukla D, Grasso J, Willis B G, Okyay A K, Biyikli N 2020 RSC Adv. 10 27357Google Scholar

    [84]

    Woodward J M, Rosenberg S G, Boris D R, Johnson M J, Walton S G, Johnson S D, Robinson Z R, Nepal N, Ludwig K F, Hite J K, Eddy C R 2022 J. Vac. Sci. Technol. A 40 062405Google Scholar

    [85]

    Rouf P, O’Brien N J, Rönnby K, Samii R, Ivanov I G, Ojamäe L, Pedersen H 2019 J. Phys. Chem. C 123 25691Google Scholar

    [86]

    O’Brien N J, Rouf P, Samii R, Rönnby K, Buttera S C, Hsu C-W, Ivanov I G, Kessler V, Ojamäe L, Pedersen H 2020 Chem. Mater. 32 4481Google Scholar

    [87]

    Feng X C, Peng H, Gong J H, Wang W, Liu H, Quan Z J, Pan S, Wang L 2018 J. Appl. Phys. 124 243104Google Scholar

    [88]

    Peng H, Feng X C, Gong J H, Wang W, Liu H, Quan Z J, Pan S, Wang L 2018 Appl. Surf. Sci. 459 830Google Scholar

    [89]

    Woodward J M, Rosenberg S G, Kozen A C, Nepal N, Johnson S D, Wagenbach C, Rowley A H, Robinson Z R, Joress H, Ludwig K F, Eddy C R 2019 J. Vac. Sci. Technol. A 37 030901Google Scholar

    [90]

    Hsu C W, Deminskyi P, Martinovic I, Ivanov I G, Palisaitis J, Pedersen H 2020 Appl. Phys. Lett. 117 093101Google Scholar

    [91]

    An Y L, He Y F, Wei H Y, Liu S J, Li M, Song Y M, Qiu P, Rehman A, Zheng X H, Peng M Z 2019 Results Phys. 12 804Google Scholar

    [92]

    Ho I H, Stringfellow G B 1996 MRS Online Proc. Libr. 449 871Google Scholar

    [93]

    Surender S, Prabakaran K, Loganathan R, Pradeep S, Singh S, Baskar K 2017 J. Cryst. Growth 468 249Google Scholar

    [94]

    Huang Y 2012 J. Photon. Energy 2 028501Google Scholar

    [95]

    Haider A, Kizir S, Ozgit-Akgun C, Goldenberg E, Leghari S A, Okyay A K, Biyikli N 2015 J. Mater. Chem. C 3 9620Google Scholar

    [96]

    Rouf P, Palisaitis J, Bakhit B, O'Brien N J, Pedersen H 2021 J. Mater. Chem. C 9 13077Google Scholar

    [97]

    Ozgit-Akgun C, Goldenberg E, Okyay A K, Biyikli N 2014 J. Mater. Chem. C 2 2123Google Scholar

    [98]

    Nepal N, Anderson V R, Hite J K, Eddy C R 2015 Thin Solid Films 589 47Google Scholar

    [99]

    Portillo M C, Gallardo Hernández S, Panecatl Bernal Y, Martinez Velis I, Villanueva Cab J, Alcántara S, Alvarado J 2020 Opt. Mater. 108 110206Google Scholar

    [100]

    Choi S, Ansari A S, Yun H J, Kim H, Shong B, Choi B J 2021 J. Alloy. Compd. 854 157186Google Scholar

    [101]

    Kim H, Choi S, Choi B J 2020 Coatings 10 194Google Scholar

    [102]

    Kim H, Choi S, Choi B J 2020 Coatings 10 489Google Scholar

    [103]

    Kim H, Yun H J, Choi S, Choi B J 2020 Mater. Trans. 61 88Google Scholar

  • [1] Qu Zi-Han, Zhao Yang, Ma Fei, You Jing-Bi. Preparation of high-performance large-area perovskite solar cells by atomic layer deposition of metal oxide buffer layer. Acta Physica Sinica, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [2] Li Zhong-Xiang, Wang Shu-Ya, Huang Zi-Qiang, Wang Chen, Mu Qing. Preparation of Al2O3 tunnel barrier layer in atome-level controlled Josephson junction. Acta Physica Sinica, 2022, 71(21): 218102. doi: 10.7498/aps.71.20220820
    [3] Guo Qin-Min, Qin Zhi-Hui. Development and application of vapor deposition technology in atomic manufacturing. Acta Physica Sinica, 2021, 70(2): 028101. doi: 10.7498/aps.70.20201436
    [4] Li Ye, Wang Xi-Xi, Wei Hui-Yun, Qiu Peng, He Ying-Feng, Song Yi-Meng, Duan Zhang, Shen Cheng-Tao, Peng Ming-Zeng, Zheng Xin-He. Enhancement of interface transportation for quantum dot solar cells using ultrathin InN by atomic layer deposition. Acta Physica Sinica, 2021, 70(18): 187702. doi: 10.7498/aps.70.20210554
    [5] Zhang Yu-He, Niu Dong-Mei, Lü Lu, Xie Hai-Peng, Zhu Meng-Long, Zhang Hong, Liu Peng, Cao Ning-Tong, Gao Yong-Li. Adsorption, film growth, and electronic structures of 2,7-dioctyl[1]benzothieno-[3,2-b][1]benzothiophene (C8-BTBT) on Cu (100). Acta Physica Sinica, 2016, 65(15): 157901. doi: 10.7498/aps.65.157901
    [6] Li Yong, Li Hui-Qi, Xia Yang, Liu Bang-Wu. Study on atomic layer deposition preparation of core-shell structured nanometer materials. Acta Physica Sinica, 2013, 62(19): 198102. doi: 10.7498/aps.62.198102
    [7] Yan Da-Wei, Li Li-Sha, Jiao Jin-Ping, Huang Hong-Juan, Ren Jian, Gu Xiao-Feng. Capacitance characteristics of atomic layer deposited Al2O3/n-GaN MOS structure. Acta Physica Sinica, 2013, 62(19): 197203. doi: 10.7498/aps.62.197203
    [8] Dong Ya-Bin, Xia Yang, Li Chao-Bo, Lu Wei-Er, Rao Zhi-Peng, Zhang Yang, Zhang Xiang, Ye Tian-Chun. Investigation on the relationship between the properties of atomic layer deposition ZnO film and the dose of precursor. Acta Physica Sinica, 2013, 62(14): 147306. doi: 10.7498/aps.62.147306
    [9] Bao Shan-Yong, Dong Wu-Jun, Xu Xing, Luan Tian-Bao, Li Jie, Zhang Qing-Yu. Influence of oxygen partial pressure on the crystal quality and optical properties of Mg-doped ZnO films. Acta Physica Sinica, 2011, 60(3): 036804. doi: 10.7498/aps.60.036804
    [10] Sun Xuan, Huang Xu, Wang Ya-Zhou, Feng Qing-Rong. Properties of MgB2 ultra-thin films grown by hybrid physical-chemical vapor deposition. Acta Physica Sinica, 2011, 60(8): 087401. doi: 10.7498/aps.60.087401
    [11] Ren Shu-Yang, Ren Zhong-Ming, Ren Wei-Li. Influence of grain size on the magnetic orientation growth of films prepared by vapor deposition in high magnetic field. Acta Physica Sinica, 2011, 60(1): 016104. doi: 10.7498/aps.60.016104
    [12] Lu Hang-Jun, Wu Feng-Min. Simulation of 3-dimensional thin film growth on heterogeneous substrate. Acta Physica Sinica, 2006, 55(1): 424-429. doi: 10.7498/aps.55.424
    [13] Li Yong, Sun Cheng-Wei, Liu Zhi-Wen, Zhang Qing-Yu. Study of ZnO film growth by reactive magnetron sputtering using plasma emission spectra. Acta Physica Sinica, 2006, 55(8): 4232-4237. doi: 10.7498/aps.55.4232
    [14] Yang Chun, Yu Yi, Li Yan-Rong, Liu Yong-Hua. Temperature effect on the adsorption, diffusion and initial growth mode of ZnO/Al2O3(0001) from first principles. Acta Physica Sinica, 2005, 54(12): 5907-5913. doi: 10.7498/aps.54.5907
    [15] Xie Guo-Feng, Wang De-Wu, Ying Chun-Tong. Simulation of two-dimensional thin film growth by modified DLA method. Acta Physica Sinica, 2005, 54(5): 2212-2219. doi: 10.7498/aps.54.2212
    [16] Zheng Xiao-Ping, Zhang Pei-Feng, Liu Jun, He De-Yan, Ma Jian-Tai. Computer simulation of thin-film epitaxy growth. Acta Physica Sinica, 2004, 53(8): 2687-2693. doi: 10.7498/aps.53.2687
    [17] Wang Xiao-Ping, Xie Feng, Shi Qin-Wei, Zhao Te-Xiu. The effect of lattice mismatch on the nucleation process of heteroepitaxial growth of ultrathin film. Acta Physica Sinica, 2004, 53(8): 2699-2704. doi: 10.7498/aps.53.2699
    [18] Qian Chang-Ji, Gao Guo-Liang, Li Hong, Ye Gao-Xiang. . Acta Physica Sinica, 2002, 51(9): 1960-1964. doi: 10.7498/aps.51.1960
    [19] CHEN MIN, WEI HE-LIN, LIU ZU-LI, YAO KAI-LUN. EFFECT OF LOW-ENERGY DEPOSITION PARTICLES ON INITIAL STAGE OF THIN FILM. Acta Physica Sinica, 2001, 50(12): 2446-2451. doi: 10.7498/aps.50.2446
    [20] YANG NING, CHEN GUANG-HUA, ZHANG YANG, GONG WEI-BIN, ZHU HE-SUN. MONTE CARLO SIMULATION OF THIN FILMS GROWTH. Acta Physica Sinica, 2000, 49(11): 2225-2229. doi: 10.7498/aps.49.2225
Metrics
  • Abstract views:  4493
  • PDF Downloads:  158
  • Cited By: 0
Publishing process
  • Received Date:  23 May 2023
  • Accepted Date:  27 December 2023
  • Available Online:  05 January 2024
  • Published Online:  05 February 2024

/

返回文章
返回
Baidu
map