-
The thickness of an active layer is limited by its low mobility of carriers in a polymer solar cell composed of the blend bulk-heterojunction formed by P3HT as donor material and PCBM as acceptor material, which can affect the light absorption of the polymer solar cell. Metal nanocrystals-doped polymer active layer can enhance its inner electrical field and absorb light due to the surface plasmon resonance (SPR) effect of the nanocrystals. Two-dimensional electrical field distributions in the polymer solar cells are simulated based on finite difference time domain (FDTD) approach, under the assumption that the diameter of doping nano-Ag is 50 nm, the distance between two nanocrystals is 50nm and the incident light wavelength is 400 nm or 500 nm. The electrical field distributions over the cross-section of nano-Ag are also simulated at the incident light angle of 15°, 45°, 60°, respectively. The light absorption of different devices are calculated, in which the sizes of nano-Ag take 10 nm, 20 nm and 50 nm, respectively, Particles of nano-Ag are dispersed in PEDOT:PSS layer. Moreover, the light absorption is calculated at the incident light angles of 15°, 45°, 60°, respectively. Results show that the electrical field is redistributed due to the SPR effect caused by nano-Ag in the polymer active layer. A larger size of nano-Ag leads to light scattering in a wider angle, thus results in more light absorption by the device. Here, the colloid of nano-Ag is prepared from an organic salt of Ag, and the polymer solar cell with nano-Ag is fabricated in the structure of glass /ITO (~100 nm) /PEDOT:PSS (40 nm) /P3HT:PCBM (~100 nm)/(nano-Ag) /LiF (1 nm) /Al (120 nm). Furthermore, experimental results show that the nano-Ag doped in P3HT:PCBM layer increases light absorption and improves the electrical performance of the device, which enhances the incident photon conversion efficiency (IPCE) in spectrum at 520nm by 17.9%.
[1] Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nature 4 864
[2] Park S H, Roy A, Beaupre S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J 2009 Nature Photonics 3 297
[3] Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J 2007 Science 317 222
[4] Chen D, Nakahara A, Wei D, Nordlund D, Thomas P R 2011 Nano Lett. 11 561
[5] Armbruster O, Lungenschmied C, Bauer S 2011 Phys. Rev. B 84 085208
[6] Monestier F, Simon J J, Torchio P, Escoubas L, Flory F, Bailly S, Bettignies R, Stephane G, Defranoux C 2007 Sol. Energy Mater. Sol. Cells 91 405
[7] Chen M X, Nilsson D, Kugler T, Berggren M, Remonen T 2002 Appl. Phys. Lett. 81 2011
[8] Wang J Z, Gu J, Zenhausern F, Sirringhaus H 2006 Appl. Phys. Lett. 88 133502
[9] Emelie P Y, Cagin E, Siddiqui J, Cagin E, Siddiqui J, Phillips J D, Fulk C, Garland J 2007 J. Electron. Mater. 36 841
[10] Stenzel O, Stendal A, Voigtsberger K, Borczyskowski C 1995 Sol. Energy Mater. Sol. 37 337
[11] Westphalen M Kreibig U, Rostalski J LuKth H, Meissner D 2001 Sol. Energy Mater. Sol. Cells 61 97
[12] Rand B P, Peumans P, Forrest S R 2004 J. Appl. Phys. 96 7519
[13] Catchpole K R, Polman A 2008 Appl. Phys. Lett. 93 191113
[14] Kim S S, Na S I Jo J, Kim D Y, Nah Y C 2008 Appl. Phys. Lett. 93 073307
[15] Qiao L Wang D, Zuo L, Ye Y, Qian J, Chen H, He S 2011 Applied Energy 88 848
[16] Catchpole K R and Polman A 2008 Opt Express 16 21793
[17] Atwater H A and Polman A 2010 Nature Mater. 9 205
[18] Wei B, Ge D B 2010 Acta. Phys. Sin. 54 648 (in Chinese) [魏兵, 葛德彪 2010 54 648]
-
[1] Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nature 4 864
[2] Park S H, Roy A, Beaupre S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J 2009 Nature Photonics 3 297
[3] Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J 2007 Science 317 222
[4] Chen D, Nakahara A, Wei D, Nordlund D, Thomas P R 2011 Nano Lett. 11 561
[5] Armbruster O, Lungenschmied C, Bauer S 2011 Phys. Rev. B 84 085208
[6] Monestier F, Simon J J, Torchio P, Escoubas L, Flory F, Bailly S, Bettignies R, Stephane G, Defranoux C 2007 Sol. Energy Mater. Sol. Cells 91 405
[7] Chen M X, Nilsson D, Kugler T, Berggren M, Remonen T 2002 Appl. Phys. Lett. 81 2011
[8] Wang J Z, Gu J, Zenhausern F, Sirringhaus H 2006 Appl. Phys. Lett. 88 133502
[9] Emelie P Y, Cagin E, Siddiqui J, Cagin E, Siddiqui J, Phillips J D, Fulk C, Garland J 2007 J. Electron. Mater. 36 841
[10] Stenzel O, Stendal A, Voigtsberger K, Borczyskowski C 1995 Sol. Energy Mater. Sol. 37 337
[11] Westphalen M Kreibig U, Rostalski J LuKth H, Meissner D 2001 Sol. Energy Mater. Sol. Cells 61 97
[12] Rand B P, Peumans P, Forrest S R 2004 J. Appl. Phys. 96 7519
[13] Catchpole K R, Polman A 2008 Appl. Phys. Lett. 93 191113
[14] Kim S S, Na S I Jo J, Kim D Y, Nah Y C 2008 Appl. Phys. Lett. 93 073307
[15] Qiao L Wang D, Zuo L, Ye Y, Qian J, Chen H, He S 2011 Applied Energy 88 848
[16] Catchpole K R and Polman A 2008 Opt Express 16 21793
[17] Atwater H A and Polman A 2010 Nature Mater. 9 205
[18] Wei B, Ge D B 2010 Acta. Phys. Sin. 54 648 (in Chinese) [魏兵, 葛德彪 2010 54 648]
Catalog
Metrics
- Abstract views: 6871
- PDF Downloads: 815
- Cited By: 0