-
本文根据斯托克斯和反斯托克斯拉曼光谱散射截面的不同,测量样品表面温度,并进一步提出了一种测量材料热导率的新方法. 利用该方法系统地研究了GexSb10Se90-x,GexSb15Se85-x和 GexSb20Se80-x三个系列的GeSbSe玻璃的热导率,从而证明该方法的实用性和可靠性,同时分析其化学组分对材料结构和热导率的影响. 该方法测量获得的热导率与文献报道的热导率基本一致,表明拉曼光谱法测试材料的热导率简单、快捷,是一种实用的测量材料热导率的方法. 结果表明每个系列硫系玻璃的热导率随着Ge浓度的增加而增加,在等于或近似化学配比组分处,硫系玻璃的热导率达到最大值,然后随着Ge含量的继续增加而降低. 认为GeSbSe硫系玻璃热导率表现出的阈值现象归因于GeSbSe三元网络结构分离为二元结构的结果.
-
关键词:
- 拉曼散射 /
- 热导率 /
- 硫系玻璃 /
- GexSbySe100-x-y
We have measured the temperature raised by laser irradiation on the basis of difference between Stokes and anti-Stokes Raman scattering cross-sections, and further estimated the thermal conductivity of the material. GeSbSe glasses with compositions of GexSb10Se90-x, GexSb15Se85-x, and GexSb20Se80-x are systematically studied with the aim of verifying the practicability of the new method and understanding the role of chemical composition in determining the structure and thermal conductivity of the glasses. All of the results are in agreement with those reported on thermal conductivity measured by different methods in the literature. It is indicated that Raman scattering method is convenient and efficient to measure thermal conductivity of the materials. For each group of glasses, it is found that the thermal conductivity increases with increasing Ge concentration up to a transition point corresponding to the glass with chemically stoichiometric composition. We ascribe the threshold behaviour of the thermal conductivity to the demixing of the structural units from glass network.-
Keywords:
- Raman scattering /
- thermal conductivity /
- chalcogenide glass /
- GexSbySe100-x-y
[1] Frerichs R 1953 Journal of the Optical Society of America 43 1153
[2] Eggleton B J, Davies B L, Richardson K 2011 Nature Photonics 5 141-148
[3] Dai S X, Yu X Y, Zhang W, Lin C G, Song B A, Wang X S, Liu Y X, Xu T F, Nie Q H 2011 Laser & Optoelectronics Progress 48 0906 02 (in Chinese) [戴世勋, 於杏燕, 张巍, 林常规, 宋宝安, 王训四, 刘永兴, 徐铁峰, 聂秋华 2011 激光与光电子学进展 48 090602]
[4] Xue J Q, Xu M, Gong Y Q, Zhao X J 2003 Optoelectronic Technology & Information 16 28 (in Chinese) [薛建强, 徐曼, 龚跃球, 赵修建 2003 光电子技术与信息 16 28]
[5] Cahill D G 1990 Rev. Sci. Instrum. 61 802
[6] Feng P, Wang T H 2003 Acta Phys. Sin. 52 2249 (in Chinese)[丰平, 王太宏 2003 52 2249]
[7] Gaal P S, Thermitus M A, Stroe D E 2004 J. Therm. Anal. Cal. 78 185-189
[8] Li W Z, Wang J 2012 Acta Phys. Sin. 61 114401 (in Chinese)[黎威志, 王军 2012 61 114401]
[9] Fang Z Q, Hu M, Zhang W, Zhang X R 2008 Acta Phys. Sin. 57 103 (in Chinese)[房振乾, 胡明, 张伟, 张绪瑞 2008 57 103]
[10] Hu P, Chen Z S 2009 Calorimetry and measurement of thermal properties pp96-155 (in Chinese) [胡芃, 陈则韶 2009 量热技术和热物性测定(第2版) (北京: 中国科学技术大学出版社) 第96–155 页]
[11] Tritt T M 2004 Thermal Conductivity Theory, Properties, and Applications (New York: Kluwer Academic/Plenum Publishers)
[12] Nonnenmacher M, Wickramasinghe H K 1992 Appl. Phys. Lett. 61 168
[13] Wang R P, Zhou G W, Liu Y L, Pan S H, Zhang H Z, Yu D P, Zhang Z 2000 Phys. Rev. B 61 16827
[14] Cheng G X 2008 Raman and Brillouin Scattering (Beijing: Science Press) (in Chinese) [程光煦 2008 拉曼布里渊散射(第2版) (北京: 科学出版社)]
[15] Kostadinova O 2009 Ph. D. Dissertation (Bulgarian Academy of Sciences)
[16] Uemura O, Kameda Y, Kokai S, Satow T 1990 J. Non-Cryst. Solids 117 219
[17] Wei W H, Wang R P, Shen X, Fang L, Davies B L 2013 J. Phys. Chem. C 117 16571
[18] Wang R P, Smith A, Prasad A, Choi D Y, Davies B L 2009 J. Appl. Phys. 106 043520
[19] Wu T Y, Lai W S, Fu B Q 2013 Chin. Phys. B 22 076601
[20] Huang C L, Feng Y H, Zhang X X, Li J, Wang G, Chou A H 2013 Acta Phys. Sin. 62 026501 (in Chinese)[黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉 2013 62 026501]
[21] Štoura L, Vasko A, Srb I, Musil C, Štrba F 1968 Czech. J. Phys. B 18 1067
[22] Afifi M A, Labib H H, EI-Fazary M H, Fadel M 1992 Appl. Phys. A. 55 167
[23] Srinivasan A, Madhusoodanan K N, Gopal E S R 1992 Phys. Rev. B 45 8112
[24] Micoulaut M, Naumis G G 1999 Europhys. Lett. 47 568
[25] Mahadevan S, Giridhar A 1992 J. Non-Cryst. Solids 143 52
[26] P Boolchand, Chen P. Vempati U 2009 J. Non-Cryst. Solids 355 1773
[27] Wang R P, Smith A, Luther-Davies B, Kokkonen H, Jackson I 2009 J. Appl. Phys. 105 056109
[28] Wang T, Wei W H, Shen X, Wang R P, Luther-Davies B, Jackson I 2013 J. Phys. D: Appl. Phys. 46 165302
[29] Wang R P, Luther-Davies B 2014 Amorphous chalcogenides: Advances and Applications (Singapore) pp97-141
-
[1] Frerichs R 1953 Journal of the Optical Society of America 43 1153
[2] Eggleton B J, Davies B L, Richardson K 2011 Nature Photonics 5 141-148
[3] Dai S X, Yu X Y, Zhang W, Lin C G, Song B A, Wang X S, Liu Y X, Xu T F, Nie Q H 2011 Laser & Optoelectronics Progress 48 0906 02 (in Chinese) [戴世勋, 於杏燕, 张巍, 林常规, 宋宝安, 王训四, 刘永兴, 徐铁峰, 聂秋华 2011 激光与光电子学进展 48 090602]
[4] Xue J Q, Xu M, Gong Y Q, Zhao X J 2003 Optoelectronic Technology & Information 16 28 (in Chinese) [薛建强, 徐曼, 龚跃球, 赵修建 2003 光电子技术与信息 16 28]
[5] Cahill D G 1990 Rev. Sci. Instrum. 61 802
[6] Feng P, Wang T H 2003 Acta Phys. Sin. 52 2249 (in Chinese)[丰平, 王太宏 2003 52 2249]
[7] Gaal P S, Thermitus M A, Stroe D E 2004 J. Therm. Anal. Cal. 78 185-189
[8] Li W Z, Wang J 2012 Acta Phys. Sin. 61 114401 (in Chinese)[黎威志, 王军 2012 61 114401]
[9] Fang Z Q, Hu M, Zhang W, Zhang X R 2008 Acta Phys. Sin. 57 103 (in Chinese)[房振乾, 胡明, 张伟, 张绪瑞 2008 57 103]
[10] Hu P, Chen Z S 2009 Calorimetry and measurement of thermal properties pp96-155 (in Chinese) [胡芃, 陈则韶 2009 量热技术和热物性测定(第2版) (北京: 中国科学技术大学出版社) 第96–155 页]
[11] Tritt T M 2004 Thermal Conductivity Theory, Properties, and Applications (New York: Kluwer Academic/Plenum Publishers)
[12] Nonnenmacher M, Wickramasinghe H K 1992 Appl. Phys. Lett. 61 168
[13] Wang R P, Zhou G W, Liu Y L, Pan S H, Zhang H Z, Yu D P, Zhang Z 2000 Phys. Rev. B 61 16827
[14] Cheng G X 2008 Raman and Brillouin Scattering (Beijing: Science Press) (in Chinese) [程光煦 2008 拉曼布里渊散射(第2版) (北京: 科学出版社)]
[15] Kostadinova O 2009 Ph. D. Dissertation (Bulgarian Academy of Sciences)
[16] Uemura O, Kameda Y, Kokai S, Satow T 1990 J. Non-Cryst. Solids 117 219
[17] Wei W H, Wang R P, Shen X, Fang L, Davies B L 2013 J. Phys. Chem. C 117 16571
[18] Wang R P, Smith A, Prasad A, Choi D Y, Davies B L 2009 J. Appl. Phys. 106 043520
[19] Wu T Y, Lai W S, Fu B Q 2013 Chin. Phys. B 22 076601
[20] Huang C L, Feng Y H, Zhang X X, Li J, Wang G, Chou A H 2013 Acta Phys. Sin. 62 026501 (in Chinese)[黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉 2013 62 026501]
[21] Štoura L, Vasko A, Srb I, Musil C, Štrba F 1968 Czech. J. Phys. B 18 1067
[22] Afifi M A, Labib H H, EI-Fazary M H, Fadel M 1992 Appl. Phys. A. 55 167
[23] Srinivasan A, Madhusoodanan K N, Gopal E S R 1992 Phys. Rev. B 45 8112
[24] Micoulaut M, Naumis G G 1999 Europhys. Lett. 47 568
[25] Mahadevan S, Giridhar A 1992 J. Non-Cryst. Solids 143 52
[26] P Boolchand, Chen P. Vempati U 2009 J. Non-Cryst. Solids 355 1773
[27] Wang R P, Smith A, Luther-Davies B, Kokkonen H, Jackson I 2009 J. Appl. Phys. 105 056109
[28] Wang T, Wei W H, Shen X, Wang R P, Luther-Davies B, Jackson I 2013 J. Phys. D: Appl. Phys. 46 165302
[29] Wang R P, Luther-Davies B 2014 Amorphous chalcogenides: Advances and Applications (Singapore) pp97-141
计量
- 文章访问数: 8321
- PDF下载量: 767
- 被引次数: 0