Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of grain size on the thermal conduction of nanocrystalline copper

Liu Ying-Guang Zhang Shi-Bing Han Zhong-He Zhao Yu-Jin

Citation:

Influence of grain size on the thermal conduction of nanocrystalline copper

Liu Ying-Guang, Zhang Shi-Bing, Han Zhong-He, Zhao Yu-Jin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Naocrystalline (nc) material shows lower thermal conductivity than its coarse grain counterpart, which restricts its engineering applications. In order to study the effects of grain size and grain boundary on the thermal conductivity of nc material, nc copper is prepared by the high pressure sintering method. The pure nc Cu powder is used as the starting material, and the high pressure sintering experiment is carried out under a DS614 MN cubic press. Prior to the high pressure sintering experiment, the Cu powders are first pre-compressed into cylinders, then they are compressed under 5 GPa at temperatures ranging from 700 to 900 ℃ for 30 min. The grain size and micro-structural characteristics are investigated by the scanning electron microscope (SEM) and X-ray diffraction (XRD). The results show that the sintered Cu bulk material can achieve nearly full densification with a relative density of 99.98% and the grain growth of the Cu particles is effectively inhibited. The thermal conductivity measurement is performed by NETZSCH LFA-427 at 300 K and 45% RH. The test results show that the thermal conductivity of nc copper is lower than that of its coarse grain counterpart, and the thermal conductivity increases with grain size increasing. For example, as the grain size increases from 390 to 715 nm, the corresponding thermal conductivity increases from 200.63 to 233.37 Wm-1K-1, which are 53.4% and 60.6% of the thermal conductivity of the coarse grain copper, respectively. For a better understanding of the effects of grain boundary and size on the thermal conductivity of nc material, a simple modified model, with special emphasis on the contributions of electron and phonon conduction, is presented by incorporating the concept of the Kapitza resistance into an effective medium approach. The theoretical calculations are in good agreement with our experimental results. The combination of experimental results and theoretical calculations concludes that the thermal conductivity of nc material is weakened mainly by two factors: the grain boundary-electron (phonon) scattering on the grain boundary and the electron (phonon)-electron (phonon) scattering in the grain interior. That is to say, the thermal resistance of nc material can be divided into two parts: one is the intragranular thermal resistance from the grain, the other is the intergranular thermal resistance from the grain boundaries. As is well known, when the grain size decreases to a nano-range, the volume fraction of the grain boundary presents a sharp increase, and the intergranular thermal resistance from the grain boundaries becomes more important.
      Corresponding author: Liu Ying-Guang, liuyingguang@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51301069), the Natural Science Foundation of Hebei Province, China (Grant No. E2014502073), and the Fundamental Research Fund for the Central Universities, China (Grant No. 2014MS114).
    [1]

    Bai X M, Zhang Y F, Tonks M R 2015 Acta Mater. 85 95

    [2]

    Wang S, Brooks I, McCrea J L, Palumbo G, Cingara G, Erb U 2011 Adv. Mater. Res. 409 561

    [3]

    Li Q H, Chen S S, Zeng J H 2013 Chin. Phys. B 22 120204

    [4]

    Benkassem S, Capolungo L, Cherkaoui M 2007 Acta Mater. 55 3563

    [5]

    Angadi M A, Watanabe T, Bodapati A, Xiao X C, Auciello O, Carlisle J A, Eastman J A, Keblinski P, Schelling P K, Phillpot S R 2006 J. Appl. Phys. 99 114301

    [6]

    Tritt T M, Subramanian M A 2006 Mater. Res. Soc. Bull. 31 188

    [7]

    Maldovan M 2011 J. Appl. Phys. 110 114310

    [8]

    Seo D, Ogawa K, Sakaguchi K, Miyamoto N, Tsuzuki Y 2012 Surf. Coat. Tech. 207 233

    [9]

    Biswas K, He J, Zhang Q, Wang G, Uher C, Dravid V, Kanatzidis M 2011 Nat. Chem. 3 160

    [10]

    Khader M M, Kumar S, Abbasbandy S 2013 Chin. Phys. B 22 110201

    [11]

    Chen G (translated by Zhou H C, Li B S, Huang Z F, Liu H B) 2014 Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Beijing: Tsinghua University Press) pp14-15 (in Chinese) [陈刚 著 (周怀春, 李冰水, 黄志峰, 刘华波 译) 2014 纳米尺度能量输运和转换: 对电子、分子、声子和光子的统一处理 (北京: 清华大学出版社)第14-15页]

    [12]

    Guo Z Y, Gao B Y, Zhu H Y, Zhang Q G 2007 Acta Phys. Sin. 56 3306 (in Chinese) [过曾元, 曹炳阳, 朱宏晔, 张清光 2007 56 3306]

    [13]

    Yang H S, Bai G R, Thompson L J, Eastman J A 2002 Acta Mater. 50 2309

    [14]

    Hao Q 2012 J. Appl. Phys. 111 014309

    [15]

    Soyez G, Eastman J A, Thompson L J, Bai G R, Baldo P M, McCormick A W 2000 Appl. Phys. Lett. 77 1155

    [16]

    Hua C Y, Minnich A J 2014 Semicond. Sci. Tech. 29 1

    [17]

    Bux S K, Blair R G, Gognal P K, Lee H, Chen G, Dresselhaus M S, Kaner R B, Fleurial J P 2009 Adv. Funct. Mater. 19 2445

    [18]

    Joshi G, Lee H, Lan Y C, Wang X W, Zhu G H, Wang D Z, Gould R W, Cuff D C, Tang M Y, Dresselhaus M S, Chen G, Ren Z F 2008 Nano Lett. 8 4670

    [19]

    Nan C W, Birringer R 1998 Phys. Rev. B 57 8264

    [20]

    Yao W J, Cao B Y, Yun H M, Chen B M 2014 Nanoscale Res. Lett. 9 408

    [21]

    Dong H, Wen B, Melnik R 2014 Sci. Rep.-UK 4 7037

    [22]

    Chen X F, He D W, Wang F L, Zhang J, Li Y J, Fang L M, Lei L, Kou Z L 2009 Chin. J. High Pressure Phys. 23 98 (in Chinese) [陈晓芳, 贺端威, 王福龙, 张剑, 李拥军, 房雷鸣, 雷力, 寇自力 2009 高压 23 98]

    [23]

    Wang S, Brooks I, McCrea J L, Palumbo G, Cingara G, Erb U 2011 Adv. Mater. Res. 409 561

    [24]

    Jeng M S, Yang R G, David S, Chen G 2008 J. Heat Transfer 130 042410

    [25]

    Wang Z, Alaniz J E, Jang W, Garay J E, Dames C 2011 Nano Lett. 11 2206

    [26]

    Hua Y C, Dong Y, Cao B Y 2013 Acta Phys. Sin. 62 244401 (in Chinese) [华钰超, 董源, 曹炳阳 2013 62 244401]

    [27]

    Joshi A A, Majumdar A 1993 J. Appl. Phys. 74 31

    [28]

    Heino P, Ristolainen E 2003 Microelectron. J. 34 773

    [29]

    Han G Z, Guo Z Y 2007 Proc. Chin. Soc. Electrical Eng. 17 98 (in Chinese) [韩光泽, 过增元 2007 中国电机工程学报 17 98]

  • [1]

    Bai X M, Zhang Y F, Tonks M R 2015 Acta Mater. 85 95

    [2]

    Wang S, Brooks I, McCrea J L, Palumbo G, Cingara G, Erb U 2011 Adv. Mater. Res. 409 561

    [3]

    Li Q H, Chen S S, Zeng J H 2013 Chin. Phys. B 22 120204

    [4]

    Benkassem S, Capolungo L, Cherkaoui M 2007 Acta Mater. 55 3563

    [5]

    Angadi M A, Watanabe T, Bodapati A, Xiao X C, Auciello O, Carlisle J A, Eastman J A, Keblinski P, Schelling P K, Phillpot S R 2006 J. Appl. Phys. 99 114301

    [6]

    Tritt T M, Subramanian M A 2006 Mater. Res. Soc. Bull. 31 188

    [7]

    Maldovan M 2011 J. Appl. Phys. 110 114310

    [8]

    Seo D, Ogawa K, Sakaguchi K, Miyamoto N, Tsuzuki Y 2012 Surf. Coat. Tech. 207 233

    [9]

    Biswas K, He J, Zhang Q, Wang G, Uher C, Dravid V, Kanatzidis M 2011 Nat. Chem. 3 160

    [10]

    Khader M M, Kumar S, Abbasbandy S 2013 Chin. Phys. B 22 110201

    [11]

    Chen G (translated by Zhou H C, Li B S, Huang Z F, Liu H B) 2014 Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Beijing: Tsinghua University Press) pp14-15 (in Chinese) [陈刚 著 (周怀春, 李冰水, 黄志峰, 刘华波 译) 2014 纳米尺度能量输运和转换: 对电子、分子、声子和光子的统一处理 (北京: 清华大学出版社)第14-15页]

    [12]

    Guo Z Y, Gao B Y, Zhu H Y, Zhang Q G 2007 Acta Phys. Sin. 56 3306 (in Chinese) [过曾元, 曹炳阳, 朱宏晔, 张清光 2007 56 3306]

    [13]

    Yang H S, Bai G R, Thompson L J, Eastman J A 2002 Acta Mater. 50 2309

    [14]

    Hao Q 2012 J. Appl. Phys. 111 014309

    [15]

    Soyez G, Eastman J A, Thompson L J, Bai G R, Baldo P M, McCormick A W 2000 Appl. Phys. Lett. 77 1155

    [16]

    Hua C Y, Minnich A J 2014 Semicond. Sci. Tech. 29 1

    [17]

    Bux S K, Blair R G, Gognal P K, Lee H, Chen G, Dresselhaus M S, Kaner R B, Fleurial J P 2009 Adv. Funct. Mater. 19 2445

    [18]

    Joshi G, Lee H, Lan Y C, Wang X W, Zhu G H, Wang D Z, Gould R W, Cuff D C, Tang M Y, Dresselhaus M S, Chen G, Ren Z F 2008 Nano Lett. 8 4670

    [19]

    Nan C W, Birringer R 1998 Phys. Rev. B 57 8264

    [20]

    Yao W J, Cao B Y, Yun H M, Chen B M 2014 Nanoscale Res. Lett. 9 408

    [21]

    Dong H, Wen B, Melnik R 2014 Sci. Rep.-UK 4 7037

    [22]

    Chen X F, He D W, Wang F L, Zhang J, Li Y J, Fang L M, Lei L, Kou Z L 2009 Chin. J. High Pressure Phys. 23 98 (in Chinese) [陈晓芳, 贺端威, 王福龙, 张剑, 李拥军, 房雷鸣, 雷力, 寇自力 2009 高压 23 98]

    [23]

    Wang S, Brooks I, McCrea J L, Palumbo G, Cingara G, Erb U 2011 Adv. Mater. Res. 409 561

    [24]

    Jeng M S, Yang R G, David S, Chen G 2008 J. Heat Transfer 130 042410

    [25]

    Wang Z, Alaniz J E, Jang W, Garay J E, Dames C 2011 Nano Lett. 11 2206

    [26]

    Hua Y C, Dong Y, Cao B Y 2013 Acta Phys. Sin. 62 244401 (in Chinese) [华钰超, 董源, 曹炳阳 2013 62 244401]

    [27]

    Joshi A A, Majumdar A 1993 J. Appl. Phys. 74 31

    [28]

    Heino P, Ristolainen E 2003 Microelectron. J. 34 773

    [29]

    Han G Z, Guo Z Y 2007 Proc. Chin. Soc. Electrical Eng. 17 98 (in Chinese) [韩光泽, 过增元 2007 中国电机工程学报 17 98]

  • [1] Liu Yu, Tian Qiang, Wang Xin-Yan, Guan Xue-Fei. Efficient grain size evaluation based on single direction measurement of ultrasonic backscattering coefficient. Acta Physica Sinica, 2024, 73(7): 074301. doi: 10.7498/aps.73.20231959
    [2] Zhang Feng-Guo, Zhao Fu-Qi, Liu Jun, He An-Min, Wang Pei. Dependence of spallstrength on temperature, grain size and strain rate in pure ductile metals. Acta Physica Sinica, 2022, 71(3): 034601. doi: 10.7498/aps.71.20210702
    [3] Tang Dao-Sheng, Hua Yu-Chao, Zhou Yan-Guang, Cao Bing-Yang. Thermal conductivity modeling of GaN films. Acta Physica Sinica, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [4] Spall strength dependence on temperature, grain size and strain rate in pure ductile metals. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210702
    [5] Liu Ying-Guang, Bian Yong-Qing, Han Zhong-He. Heat transport behavior of bicrystal ZnO containing tilt grain boundary. Acta Physica Sinica, 2020, 69(3): 033101. doi: 10.7498/aps.69.20190627
    [6] Li Shan,  Li Xiong-Bing,  Song Yong-Feng,  Chen Chao. Ultrasonic sacttering unified theory for polycrystal material with grain sizes distribution. Acta Physica Sinica, 2018, 67(23): 234301. doi: 10.7498/aps.67.20181751
    [7] Wang Peng, Xu Jian-Gang, Zhang Yun-Guang, Song Hai-Yang. Molecular dynamics simulation of effect of grain on mechanical properties of nano-polycrystal -Fe. Acta Physica Sinica, 2016, 65(23): 236201. doi: 10.7498/aps.65.236201
    [8] Huang Bin-Bin, Xiong Chuan-Bing, Zhang Chao-Yu, Huang Ji-Feng, Wang Guang-Xu, Tang Ying-Wen, Quan Zhi-Jue, Xu Long-Quan, Zhang Meng, Wang Li, Fang Wen-Qing, Liu Jun-Lin, Jiang Feng-Yi. Electroluminescence properties of vertical structure GaN based LED on silicon and copper submount at different temperatures and current densities. Acta Physica Sinica, 2014, 63(21): 217806. doi: 10.7498/aps.63.217806
    [9] Li Jing, Feng Yan-Hui, Zhang Xin-Xin, Huang Cong-Liang, Yang Mu. Thermal conductivities of metallic nanowires with considering surface and grain boundary scattering. Acta Physica Sinica, 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [10] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Jing, Wang Ge, Chou Ai-Hui. Thermal conductivity of metallic nanoparticle. Acta Physica Sinica, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [11] Li Wei, Feng Yan-Hui, Tang Jin-Jin, Zhang Xin-Xin. Thermal conductivity and thermal rectification of carbon nanotube Y junctions. Acta Physica Sinica, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [12] Wang Jing, Liu Gui-Chang, Li Hong-Ling, Hou Bao-Rong. Study on the thermal conductivity of diamond-like carbon functionally graded material on copper substrate. Acta Physica Sinica, 2012, 61(5): 058102. doi: 10.7498/aps.61.058102
    [13] Yang Wei-Ming, Liu Hai-Shun, Dun Chao-Chao, Zhao Yu-Cheng, Dou Lin-Ming. The mechanism of the anomalous variation of grain size for Fe-based nanocrystalline alloys. Acta Physica Sinica, 2012, 61(10): 106802. doi: 10.7498/aps.61.106802
    [14] Wang Ying-Long, Zhang Peng-Cheng, Liu Hong-Rang, Liu Bao-Ting, Fu Guang-Sheng. Effects of grain size and substrate stress of ferroelectric film on the physical properties. Acta Physica Sinica, 2011, 60(7): 077702. doi: 10.7498/aps.60.077702
    [15] Hou Quan-Wen, Cao Bing-Yang, Guo Zeng-Yuan. Thermal conductivity of carbon nanotube: From ballistic to diffusive transport. Acta Physica Sinica, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [16] Mao Chao-Liang, Dong Xian-Lin, Wang Gen-Shui, Yao Chun-Hua, Cao Fei, Cao Sheng, Yang Li-Hui, Wang Yong-Ling. Grain size dependence of the dielectric properties of Ba0.70Sr0.30TiO3 ceramics and its mechanisms. Acta Physica Sinica, 2009, 58(8): 5784-5789. doi: 10.7498/aps.58.5784
    [17] Wang Hao, Liu Guo-Quan, Luan Jun-Hua, Yue Jing-Chao, Qin Xiang-Ge. Study on the relation among grain edge length, grain size and topology with Monte Carlo simulation. Acta Physica Sinica, 2009, 58(13): 132-S136. doi: 10.7498/aps.58.132
    [18] Li Shi-Bin, Wu Zhi-Ming, Yuan Kai, Liao Nai-Man, Li Wei, Jiang Ya-Dong. Study on thermal conductivity of hydrogenated amorphous silicon films. Acta Physica Sinica, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
    [19] Yu Bo-Lin, Qi Qiong, Tang Xin-Feng, Zhang Qing-Jie. Effect of grain size on thermoelectric properties of CoSb3 compound. Acta Physica Sinica, 2005, 54(12): 5763-5768. doi: 10.7498/aps.54.5763
    [20] Li Mei-Juan, Hu Hai-Yun, Xing Xiu-San. The relationship between fatigue life and grain size of polycrystalline metals. Acta Physica Sinica, 2003, 52(8): 2092-2095. doi: 10.7498/aps.52.2092
Metrics
  • Abstract views:  7892
  • PDF Downloads:  308
  • Cited By: 0
Publishing process
  • Received Date:  17 October 2015
  • Accepted Date:  06 February 2016
  • Published Online:  05 May 2016

/

返回文章
返回
Baidu
map