Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Compositional design of spectrally stable blue mixed-halide perovskite LEDs

FENG Jiyu LIU Min QU Zhengguo ZHAO Dongnan LI Daopeng SHI Tongfei

Citation:

Compositional design of spectrally stable blue mixed-halide perovskite LEDs

FENG Jiyu, LIU Min, QU Zhengguo, ZHAO Dongnan, LI Daopeng, SHI Tongfei
cstr: 32037.14.aps.74.20250297
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • This study tackles the significant challenge of phase separation in mixed halide (Br/Cl) perovskite systems, which severely affects the spectral stability of blue perovskite light-emitting diodes (PeLEDs). A compositional engineering strategy is proposed, precisely controlling the Cs:Pb molar ratio (1∶1 to 1.1∶1) in precursor solutions to construct a CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6 composite phase structure. Transmission electron microscopy (TEM) mapping and X-ray diffraction (XRD) analysis confirm that Cs4Pb(Br1–xClx)6 nanocrystals (5–8 nm in diameter) grow in situ and uniformly encapsulate CsPb(Br1–xClx)3 microparticles (50–100 nm). This composite architecture has double functional advantages: 1) the Cs4PbX6 shell acts as a physical barrier, reducing halide ion migration activation energy and suppressing phase segregation during continuous operation; 2) the wide-bandgap (3.9–4.3 eV) Cs4PbX6 induces quantum confinement effects, confining carriers within CsPbX3 while passivating defect states, thereby improving perovskite performance. The optimized PeLED achieves notable improvements in brightness, external quantum efficiency, and operational stability, maintaining stable emission at 478 nm under a 50 mA/cm² current density. This is achieved by inhibiting halide phase separation and enhancing the efficiency of carrier recombination achieved by the cesium-lead halide heterojunction system. This work provides fundamental insights into phase-stable perovskite design via composite crystallization kinetics, providing a viable pathway toward commercial-grade blue PeLEDs for full-color displays.
      Corresponding author: SHI Tongfei, tfshi@issp.ac.cn
    [1]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [2]

    deQuilettes D W, Koch S, Burke S, Paranji R K, Shropshire A J, Ziffer M E, Ginger D S 2016 ACS Energy Lett. 1 438Google Scholar

    [3]

    Steirer K X, Schulz P, Teeter G, Stevanovic V, Yang M, Zhu K, Berry J J 2016 ACS Energy Lett. 1 360Google Scholar

    [4]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nature Nanotechnol. 9 687Google Scholar

    [5]

    Batignani G, Fumero G, Kandada A R S, Cerullo G, Gandini M, Ferrante C, Petrozza A, Scopigno T 2018 Nat. Commun. 9 1971Google Scholar

    [6]

    Ivanovska T, Dionigi C, Mosconi E, De Angelis F, Liscio F, Morandi V, Ruani G 2017 J. Phys. Chem. Lett. 8 3081Google Scholar

    [7]

    Feng S C, Shen Y, Hu X M, Su Z H, Zhang K, Wang B F, Cao L X, Xie F M, Li H Z, Gao X, Tang J X, Li Y Q 2024 Adv. Mater. 36 2410225

    [8]

    Xing Z, Jin G, Du Q, Pang P, Liu T, Shen Y, Zhang D, Yu B, Liang Y, Yang D, Tang J, Wang L, Xing G, Chen J, Ma D 2024 Adv. Mater. 36 2406706Google Scholar

    [9]

    Gao Y, Cai Q, He Y, Zhang D, Cao Q, Zhu M, Ma Z, Zhao B, He H, Di D, Ye Z, Dai X 2024 Sci. Adv. 10 eado5645Google Scholar

    [10]

    Guo B, Lai R, Jiang S, Zhou L, Ren Z, Lian Y, Li P, Cao X, Xing S, Wang Y, Li W, Zou C, Chen M, Hong Z, Li C, Zhao B, Di D 2022 Nat. Photonics 16 637Google Scholar

    [11]

    Kim J S, Heo J M, Park G S, Woo S J, Cho C, Yun H J, Kim D H, Park J, Lee S C, Park S H, Yoon E, Greenham N C, Lee T W 2022 Nature 611 688Google Scholar

    [12]

    Jiang Y, Sun C, Xu J, Li S, Cui M, Fu X, Liu Y, Liu Y, Wan H, Wei K, Zhou T, Zhang W, Yang Y, Yang J, Qin C, Gao S, Pan J, Liu Y, Hoogland S, Sargent E H, Chen J, Yuan M 2022 Nature 612 679Google Scholar

    [13]

    Jiang Y, Qin C, Cui M, He T, Liu K, Huang Y, Luo M, Zhang L, Xu H, Li S, Wei J, Liu Z, Wang H, Kim G H, Yuan M, Chen J 2019 Nat. Commun. 10 1868Google Scholar

    [14]

    Chu Z, Zhao Y, Ma F, Zhang C X, Deng H, Gao F, Ye Q, Meng J, Yin Z, Zhang X, You J 2020 Nat. Commun. 11 4165Google Scholar

    [15]

    Li Z, Chen Z, Yang Y, Xue Q, Yip H L, Cao Y 2019 Nat. Commun. 10 1027Google Scholar

    [16]

    Xing J, Zhao Y, Askerka M, Quan L N, Gong X, Zhao W, Zhao J, Tan H, Long G, Gao L, Yang Z, Voznyy O, Tang J, Lu Z H, Xiong Q, Sargent E H 2018 Nat. Commun. 9 3541Google Scholar

    [17]

    Li Z, Chen Z, Shi Z, Zou G, Chu L, Chen X K, Zhang C, So S K, Yip H L 2023 Nat. Commun. 14 6441Google Scholar

    [18]

    Karlsson M, Yi Z, Reichert S, Luo X, Lin W, Zhang Z, Bao C, Zhang R, Bai S, Zheng G, Teng P, Duan L, Lu Y, Zheng K, Pullerits T, Deibel C, Xu W, Friend R, Gao F 2021 Nat. Commun. 12 361Google Scholar

    [19]

    Bischak C G, Hetherington C L, Wu H, Aloni S, Ogletree D F, Limmer D T, Ginsberg N S 2017 Nano Lett. 17 1028Google Scholar

    [20]

    Brennan M C, Draguta S, Kamat P V, Kuno M 2018 ACS Energy Lett. 3 204Google Scholar

    [21]

    Wang X, Ling Y, Lian X, Xin Y, Dhungana K B, Perez O F, Knox J, Chen Z, Zhou Y, Beery D, Hanson K, Shi J, Lin S, Gao H 2019 Nat. Commun. 10 695Google Scholar

    [22]

    Wang L, Liu H, Zhang Y, Mohammed O F 2020 ACS Energy Lett. 5 87Google Scholar

    [23]

    Du P, Li J, Wang L, Sun L, Wang X, Xu X, Yang L, Pang J, Liang W, Luo J, Ma Y, Tang J 2021 Nat. Commun. 12 4751Google Scholar

  • 图 1  (a) CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6钙钛矿器件的能级图; (b), (c) Cs/Pb = 1和Cs/Pb = 1.1的钙钛矿薄膜的XRD图谱; (d), (g) Cs/Pb = 1和Cs/Pb = 1.1的钙钛矿薄膜的TEM图像, 比例尺为200 nm; (e), (h) Cs/Pb = 1和Cs/Pb = 1.1的钙钛矿薄膜的TEM图像, 比例尺为50 nm; (f), (i) Cs/Pb = 1和Cs/Pb = 1.1的钙钛矿薄膜的高分辨透射电子显微镜(HRTEM)图像, 比例尺为5 nm, 其对应的快速傅里叶变换(FFT)图案显示在左上角

    Figure 1.  (a) Energy level diagram of the CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6 perovskite device; (b), (c) XRD patterns of perovskite films with Cs/Pb = 1 and Cs/Pb = 1.1, respectively; (d), (g) TEM images of perovskite films with Cs/Pb = 1 and Cs/Pb = 1.1, respectively, at a scale bar of 200 nm; (e), (h) TEM images of perovskite films with Cs/Pb = 1 and Cs/Pb = 1.1, respectively, at a scale bar of 50 nm; (f), (i) HRTEM images of perovskite films with Cs/Pb = 1 and Cs/Pb = 1.1, respectively, at a scale bar of 5 nm, with their corresponding fast Fourier transform (FFT) patterns shown in the upper left corner.

    图 2  混合卤化物钙钛矿化合物CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6的光致发光(PL)特性 (a) x = 0.1时的PL光谱; (b) x = 0.2时的PL光谱; (c) x = 0.3时的PL光谱; (d) x = 0.4时的PL光谱

    Figure 2.  Photoluminescence (PL) mixed-halide perovskite compounds CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6: (a) PL spectrum for x = 0.1; (b) PL spectrum for x = 0.2; (c) PL spectrum for x = 0.3; (d) PL spectrum for x = 0.4.

    图 3  混合卤化物钙钛矿化合物CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6在温度从290 K降至150 K时的温度依赖性光致发光(PL) 光谱 (a) x = 0.1时的PL光谱; (b) x = 0.2时的PL光谱; (c) x = 0.3时的PL光谱; (d) x = 0.4时的PL光谱

    Figure 3.  Temperature-dependent photoluminescence (PL) spectra of mixed-halide perovskite compounds CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6 as the temperature decreases from 290 to 150 K: (a) PL spectrum for x = 0.1; (b) PL spectrum for x = 0.2; (c) PL spectrum for x = 0.3; (d) PL spectrum for x = 0.4.

    图 4  混合卤化物钙钛矿化合物CsPb(Br1–xClx)3和CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6在电流密度为50 mA/cm2时测量的电致发光(EL)光谱 (a), (b) CsPb(Br1–xClx)3和CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6x = 0.1时的EL光谱; (c), (d) CsPb(Br1–xClx)3和CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6x = 0.2时的EL光谱; (e), (f) CsPb(Br1–xClx)3和CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6x = 0.3时的EL光谱; (g), (h) CsPb(Br1–xClx)3和CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6x = 0.4时的EL光谱

    Figure 4.  Electroluminescence (EL) spectra of mixed-halide perovskite compounds CsPb(Br1–xClx)3 and CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6 measured under a current density of 50 mA/cm2: (a), (b) EL spectra of CsPb(Br1–xClx)3 and CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6 at x = 0.1, respectively; (c) and (d) EL spectra of CsPb(Br1–xClx)3 and CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6 at x = 0.2, respectively; (e), (f) EL spectra of CsPb(Br1–xClx)3 and CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6 at x = 0.3, respectively; (g), (h) EL spectra of CsPb(Br1–xClx)3 and CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6 at x = 0.4, respectively.

    图 5  (a), (b) Cs/Pb = 1和Cs/Pb = 1.1时CsPb(Br1–xClx)3J-V曲线; (c), (d) Cs/Pb = 1和Cs/Pb = 1.1时CsPb(Br1–xClx)3J-L曲线; (e), (f) Cs/Pb = 1和Cs/Pb = 1.1时CsPb(Br1–xClx)3的EQE曲线; (g), (h) Cs/Pb = 1和Cs/Pb = 1.1在50 mA/cm2电流密度下CsPb(Br1–xClx)3寿命曲线

    Figure 5.  (a), (b) JV curves of CsPb(Br1–xClx)3 with Cs/Pb = 1 and Cs/Pb = 1.1, respectively; (c), (d) JL curves of CsPb(Br1–xClx)3 with Cs/Pb = 1 and Cs/Pb = 1.1, respectively; (e), (f) external quantum efficiency (EQE) curves of CsPb(Br1–xClx)3 with Cs/Pb = 1 and Cs/Pb = 1.1, respectively; (g), (h) lifetime curves of CsPb(Br1–xClx)3 with Cs/Pb = 1 and Cs/Pb = 1.1 measured at a current density of 50 mA/cm2, respectively.

    Baidu
  • [1]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [2]

    deQuilettes D W, Koch S, Burke S, Paranji R K, Shropshire A J, Ziffer M E, Ginger D S 2016 ACS Energy Lett. 1 438Google Scholar

    [3]

    Steirer K X, Schulz P, Teeter G, Stevanovic V, Yang M, Zhu K, Berry J J 2016 ACS Energy Lett. 1 360Google Scholar

    [4]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nature Nanotechnol. 9 687Google Scholar

    [5]

    Batignani G, Fumero G, Kandada A R S, Cerullo G, Gandini M, Ferrante C, Petrozza A, Scopigno T 2018 Nat. Commun. 9 1971Google Scholar

    [6]

    Ivanovska T, Dionigi C, Mosconi E, De Angelis F, Liscio F, Morandi V, Ruani G 2017 J. Phys. Chem. Lett. 8 3081Google Scholar

    [7]

    Feng S C, Shen Y, Hu X M, Su Z H, Zhang K, Wang B F, Cao L X, Xie F M, Li H Z, Gao X, Tang J X, Li Y Q 2024 Adv. Mater. 36 2410225

    [8]

    Xing Z, Jin G, Du Q, Pang P, Liu T, Shen Y, Zhang D, Yu B, Liang Y, Yang D, Tang J, Wang L, Xing G, Chen J, Ma D 2024 Adv. Mater. 36 2406706Google Scholar

    [9]

    Gao Y, Cai Q, He Y, Zhang D, Cao Q, Zhu M, Ma Z, Zhao B, He H, Di D, Ye Z, Dai X 2024 Sci. Adv. 10 eado5645Google Scholar

    [10]

    Guo B, Lai R, Jiang S, Zhou L, Ren Z, Lian Y, Li P, Cao X, Xing S, Wang Y, Li W, Zou C, Chen M, Hong Z, Li C, Zhao B, Di D 2022 Nat. Photonics 16 637Google Scholar

    [11]

    Kim J S, Heo J M, Park G S, Woo S J, Cho C, Yun H J, Kim D H, Park J, Lee S C, Park S H, Yoon E, Greenham N C, Lee T W 2022 Nature 611 688Google Scholar

    [12]

    Jiang Y, Sun C, Xu J, Li S, Cui M, Fu X, Liu Y, Liu Y, Wan H, Wei K, Zhou T, Zhang W, Yang Y, Yang J, Qin C, Gao S, Pan J, Liu Y, Hoogland S, Sargent E H, Chen J, Yuan M 2022 Nature 612 679Google Scholar

    [13]

    Jiang Y, Qin C, Cui M, He T, Liu K, Huang Y, Luo M, Zhang L, Xu H, Li S, Wei J, Liu Z, Wang H, Kim G H, Yuan M, Chen J 2019 Nat. Commun. 10 1868Google Scholar

    [14]

    Chu Z, Zhao Y, Ma F, Zhang C X, Deng H, Gao F, Ye Q, Meng J, Yin Z, Zhang X, You J 2020 Nat. Commun. 11 4165Google Scholar

    [15]

    Li Z, Chen Z, Yang Y, Xue Q, Yip H L, Cao Y 2019 Nat. Commun. 10 1027Google Scholar

    [16]

    Xing J, Zhao Y, Askerka M, Quan L N, Gong X, Zhao W, Zhao J, Tan H, Long G, Gao L, Yang Z, Voznyy O, Tang J, Lu Z H, Xiong Q, Sargent E H 2018 Nat. Commun. 9 3541Google Scholar

    [17]

    Li Z, Chen Z, Shi Z, Zou G, Chu L, Chen X K, Zhang C, So S K, Yip H L 2023 Nat. Commun. 14 6441Google Scholar

    [18]

    Karlsson M, Yi Z, Reichert S, Luo X, Lin W, Zhang Z, Bao C, Zhang R, Bai S, Zheng G, Teng P, Duan L, Lu Y, Zheng K, Pullerits T, Deibel C, Xu W, Friend R, Gao F 2021 Nat. Commun. 12 361Google Scholar

    [19]

    Bischak C G, Hetherington C L, Wu H, Aloni S, Ogletree D F, Limmer D T, Ginsberg N S 2017 Nano Lett. 17 1028Google Scholar

    [20]

    Brennan M C, Draguta S, Kamat P V, Kuno M 2018 ACS Energy Lett. 3 204Google Scholar

    [21]

    Wang X, Ling Y, Lian X, Xin Y, Dhungana K B, Perez O F, Knox J, Chen Z, Zhou Y, Beery D, Hanson K, Shi J, Lin S, Gao H 2019 Nat. Commun. 10 695Google Scholar

    [22]

    Wang L, Liu H, Zhang Y, Mohammed O F 2020 ACS Energy Lett. 5 87Google Scholar

    [23]

    Du P, Li J, Wang L, Sun L, Wang X, Xu X, Yang L, Pang J, Liang W, Luo J, Ma Y, Tang J 2021 Nat. Commun. 12 4751Google Scholar

  • [1] Zhang Jun-Ting, Ji Ke, Xie Yu, Li Chao. Perovskite-based two-dimensional ferromagnet Sr2RuO4 monolayer. Acta Physica Sinica, 2024, 73(22): 226101. doi: 10.7498/aps.73.20241042
    [2] Li Jia-Sen, Liang Chun-Jun, Ji Chao, Gong Hong-Kang, Song Qi, Zhang Hui-Min, Liu Ning. Improvement in performance of carbon-based perovskite solar cells by adding 1, 8-diiodooctane into hole transport layer 3-hexylthiophene. Acta Physica Sinica, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [3] Yu Yi, An Zhi-Dong, Cai Xiao-Yi, Guo Ming-Lei, Jing Cheng-Bin, Li Yan-Qing. Recent progress of tin-based perovskites and their applications in light-emitting diodes. Acta Physica Sinica, 2021, 70(4): 048503. doi: 10.7498/aps.70.20201284
    [4] Li Xue, Cao Bao-Long, Wang Ming-Hao, Feng Zeng-Qin, Chen Shu-Fen. Perovskite light-emitting diode based on combination of modified hole-injection layer and polymer composite emission layer. Acta Physica Sinica, 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [5] Fan Qin-Hua, Zu Yan-Qing, Li Lu, Dai Jin-Fei, Wu Zhao-Xin. Research progress of stability of luminous lead halide perovskite nanocrystals. Acta Physica Sinica, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [6] Wu Jia-Long, Dou Yong-Jiang, Zhang Jian-Feng, Wang Hao-Ran, Yang Xu-Yong. Perovskite light-emitting diodes based on solution-processed metal-doped nickel oxide hole injection layer. Acta Physica Sinica, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [7] Chen Jia-Mei, Su Hang, Li Wan, Zhang Li-Lai, Suo Xin-Lei, Qin Jing, Zhu Kun, Li Guo-Long. Research progress of enhancing perovskite light emitting diodes with light extraction. Acta Physica Sinica, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [8] Wu Hai-Yan, Tang Jian-Xin, Li Yan-Qing. Efficient and stable blue perovskite light emitting diodes based on defect passivation. Acta Physica Sinica, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [9] Fu Peng-Fei, Yu Dan-Ni, Peng Zi-Jian, Gong Jin-Kang, Ning Zhi-Jun. Perovskite solar cells passivated by distorted two-dimensional structure. Acta Physica Sinica, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [10] Li Zhen-Chao, Chen Zi-Ming, Zou Guang-Rui-Xing, Yip Hin-Lap, Cao Yong. Applications of organic additives in metal halide perovskite light-emitting diodes. Acta Physica Sinica, 2019, 68(15): 158505. doi: 10.7498/aps.68.20190307
    [11] Huang Wei, Li Yue-Long, Ren Hui-Zhi, Wang Peng-Yang, Wei Chang-Chun, Hou Guo-Fu, Zhang De-Kun, Xu Sheng-Zhi, Wang Guang-Cai, Zhao Ying, Yuan Ming-Jian, Zhang Xiao-Dan. Perovskite light-emitting diodes based on n-type nanocrystalline silicon oxide electron injection layer. Acta Physica Sinica, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [12] Qu Zi-Han, Chu Ze-Ma, Zhang Xing-Wang, You Jing-Bi. Research progress of efficient green perovskite light emitting diodes. Acta Physica Sinica, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [13] Duan Cong-Cong, Cheng Lu, Yin Yao, Zhu Lin. Blue perovskite light-emitting diodes: opportunities and challenges. Acta Physica Sinica, 2019, 68(15): 158503. doi: 10.7498/aps.68.20190745
    [14] Feng Bo, Deng Biao, Liu Le-Gong, Li Zeng-Cheng, Feng Mei-Xin, Zhao Han-Min, Sun Qian. Effect of plasma surface treatment on embedded n-contact for GaN-based blue light-emitting diodes grown on Si substrate. Acta Physica Sinica, 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [15] Liu Zhan-Hui, Zhang Li-Li, Li Qing-Fang, Zhang Rong, Xiu Xiang-Qian, Xie Zi-Li, Shan Yun. InGaN/GaN blue light emitting diodes grown on Si(110) and Si(111) substrates. Acta Physica Sinica, 2014, 63(20): 207304. doi: 10.7498/aps.63.207304
    [16] Chen Xin-Lian, Kong Fan-Min, Li Kang, Gao Hui, Yue Qing-Yang. Improvement of light extraction efficiency of GaN-based blue light-emitting diode by disorder photonic crystal. Acta Physica Sinica, 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [17] Gao Hui, Kong Fan-Min, Li Kang, Chen Xin-Lian, Ding Qing-An, Sun Jing. Structural optimization of GaN blue light LED with double layers of photonic crystals. Acta Physica Sinica, 2012, 61(12): 127807. doi: 10.7498/aps.61.127807
    [18] Wang Jin, Zhao Yi, Xie Wen-Fa, Duan Yu, Chen Ping, Liu Shi-Yong. High-efficiency blue fluorescence organic light-emitting diodes with DPVBi inserted in the doping emmision layer. Acta Physica Sinica, 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.2
    [19] Li Bing-Qian, Zheng Tong-Chang, Xia Zheng-Hao. Temperature characteristics of the forward voltage of GaN based blue light emitting diodes. Acta Physica Sinica, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [20] Luo Yi, Guo Wen-Ping, Shao Jia-Ping, Hu Hui, Han Yan-Jun, Xue Song, Wang Lai, Sun Chang-Zheng, Hao Zhi-Biao. A study on wavelength stability of GaN-based blue light emitting diodes. Acta Physica Sinica, 2004, 53(8): 2720-2723. doi: 10.7498/aps.53.2720
Metrics
  • Abstract views:  632
  • PDF Downloads:  17
  • Cited By: 0
Publishing process
  • Received Date:  07 March 2025
  • Accepted Date:  12 May 2025
  • Available Online:  27 May 2025
  • Published Online:  20 July 2025
  • /

    返回文章
    返回
    Baidu
    map