Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of enhancing perovskite light emitting diodes with light extraction

Chen Jia-Mei Su Hang Li Wan Zhang Li-Lai Suo Xin-Lei Qin Jing Zhu Kun Li Guo-Long

Citation:

Research progress of enhancing perovskite light emitting diodes with light extraction

Chen Jia-Mei, Su Hang, Li Wan, Zhang Li-Lai, Suo Xin-Lei, Qin Jing, Zhu Kun, Li Guo-Long
PDF
HTML
Get Citation
  • Perovskite light emitting diodes (PeLEDs) have developed rapidly in recent years due to their advantages of tenability of band gap and high color purity. At present, the external quantum efficiency of PeLED has rised up to 20%. Like the scenario of organic light emitting diode, there exist various internal losses in PeLED with low light extraction efficiency. It arises from the absorption of substrates, waveguide transmission and surface plasmon resonance of metal electrode. To improve the luminescence performance of PeLED, a well-matched optical admittance between the thin-films inside the devices is required. In this paper, the strategies of enhancing the light extraction efficiency are adopted as the materials and structures in PeLED are concerned. The applications of alternative electrode in PeLED are discussed, such as graphene, silver nanowires, metal transparent electrode and some new-types of electrodes. In addition, the plasma effect is also introduced into the PeLED to deflect the emitting light. What is more, the nano-structure grating is inserted into device to reduce the optical losses due to the large refractive index difference between the interfaces in device. Therefore, the external quantum efficiency of PeLED rises up to 28.2%, and the current efficiency can reach 88.7 cd/A.
      Corresponding author: Li Guo-Long, liglo@163.com
    • Funds: Project supported by the National Natural Science Foundation of Ningxia, China (Grant No. 2019AAC03001)
    [1]

    Wang J P, Wang N N, Jin Y Z, Si J J, Tan Z K, Du H, Cheng L, Dai X L, Bai S, He H P, Ye Z Z, Lai M L, Friend R H, Huang W 2015 Adv. Mater. 27 2311Google Scholar

    [2]

    Meng F Y, Liu X Y, Chen Y X, Cai X Y, Li M K, Shi T T, Chen Z M, Chen D C, Yip H L, Ramanan C, Blom P W M, Su S J 2020 Adv. Funct. Mater. 2020 1910167Google Scholar

    [3]

    Lee S J, Park J H, Nam Y S, Lee B R, Zhao B D, Nuzzo D D, Jung E D, Jeon H, Kim J Y, Jeong H Y, Friend R H, Song M H 2018 ACS Nano 12 3417Google Scholar

    [4]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [5]

    Quan L N, Arquer F P G D, Sabatini R P, Sargent E H 2018 Adv. Mater. 30 1801996Google Scholar

    [6]

    Wei Z H, Xing J 2019 J. Phys. Chem. Lett. 10 3035Google Scholar

    [7]

    Zou Y, Yuan Z, Bai S, Gao F, Sun B 2019 Mater. Today Nano 5 100028Google Scholar

    [8]

    Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G 2016 Adv. Mater. 28 6804Google Scholar

    [9]

    Park M H, Park J, Lee J, So H S, Kim H, Jeong S H, Han T H, Wolf C, Lee H, Yoo S, Lee T W 2019 Adv. Funct. Mater. 29 1902017Google Scholar

    [10]

    Fang Z B, Chen W J, Shi Y L, Zhao J, Chu S L, Zhang J, Xiao Z G 2020 Adv. Funct. Mater. 30 1909754Google Scholar

    [11]

    Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z, Kong D C, Dai D X, Jin Y Z, Li G Q, Li H, Peng Q M, Wang J P, Huang W 2018 Nature 562 249Google Scholar

    [12]

    Shen Y, Cheng L P, Li Y Q, Li W, Chen J D, Lee S T, Tang J X 2019 Adv. Mater. 31 1901517Google Scholar

    [13]

    Lin K B, Xing J, Quan L N, Arquer F P G D, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H, Wei Z H 2018 Nature 562 245Google Scholar

    [14]

    Zhao B D, Bai S, Kim V, Lamboll R, Shivanna R, Auras F, Richter J M, Yang L, Dai L J, Alsari M, She X J, Liang L S, Zhang J B, Lilliu S, Gao P, Snaith H J, Wang J P, Greenham N C, Friend R H, Di D W 2018 Nat. Photonics 12 783Google Scholar

    [15]

    Zhao X F, Tan Z K 2019 Nat. Photonics 4851 50

    [16]

    Xu W D, Hu Q, Bai S, Bao C X, Miao Y F, Yuan Z C, Borzda T, Barker A J, Tyukalova E, Hu Z J, Kawecki M, Wang H Y, Yan Z B, Liu X J, Shi X B, Uvdal K, Fahlman M, Zhang W J, Duchamp M, Liu J M, Petrozza A, Wang J P, Liu L M, Huang W, Gao F 2019 Nat. Photonics 13 418

    [17]

    Bao C X, Xu W D, Yang J, Bai S, Teng P P, Yang Y, Wang J P, Zhao N, Zhang W J, Huang W, Gao F 2020 Nat. Electron. 3 156Google Scholar

    [18]

    方晓敏, 江孝伟, 赵建伟 2018 激光与光电子学进展 55 082302Google Scholar

    Fang X M, Jiang X W, Zhao J W 2018 Laser Optoelectronics Progress 55 082302Google Scholar

    [19]

    Hong K, Lee J L 2011 Electron. Mater. Lett. 7 77Google Scholar

    [20]

    Meng S S, Li Y Q, Tang J X 2018 Org. Electron. 61 351Google Scholar

    [21]

    李国龙, 黄卓寅, 李衎, 甄红宇, 沈伟东, 刘旭 2011 60 077207Google Scholar

    Li G L, Huang Z Y, Li K, Zhen H Y, Shen W D, Liu X 2011 Acta. Phys. Sin. 60 077207Google Scholar

    [22]

    Hsu C W, Lee Y C, Chen H L, Chou Y F 2012 Photonic. Nanostruct. 10 523Google Scholar

    [23]

    Gao C H, Zhang Y, Ma X J, Yu F X, Jia Y L, Lei Y L, Chen P, Sun W W, Xiong Z H 2018 Org. Electron. 58 88Google Scholar

    [24]

    Zhou Y, Wu G M, Gao D W, Xing G J, Zhu Y Y, Zhang Z Q, Cao Y 2012 Adv. Mat. Res. 465 268Google Scholar

    [25]

    Seo H K, Kim H, Lee J, Park M H, Jeong S H, Kim Y H, Kwon S J, Han T H, Yoo S, Lee T W 2017 Adv. Mater. 29 1605587Google Scholar

    [26]

    Lu M, Zhang X Y, Bai X, Wu H, Shen X Y, Zhang Y, Zhang W, Zheng W T, Song H W, Yu W W, Rogach A L 2018 ACS Energy Lett. 3 1571Google Scholar

    [27]

    Liu Y S, Guo S, Yi F S, Feng J, Sun H B 2018 Opt. Lett. 43 5524Google Scholar

    [28]

    Liu Y F, Ding T, Wang H R, Zhang Y T, Chen C, Chen X T, Duan Y 2020 Appl. Surf. Sci. 504 144442Google Scholar

    [29]

    Jeong S H, Woo S H, Han T H, Park M H, Cho H, Kim Y H, Cho H, Kim Y H, Cho H, Kim H, Yoo S, Lee T W 2017 Npg. Asia. Mater. 9 e411Google Scholar

    [30]

    Wu H, Zhang Y, Zhang X Y, Lu M, Sun C, Bai X, Zhang T Q, Sun G, Yu W W 2018 Adv. Electron. Mater. 4 1700285Google Scholar

    [31]

    Miao Y F, Cheng L, Zou W, Gu L H, Zhang J, Guo Q, Peng Q M, Xu M M, He Y R, Zhang S T, Cao Y, Li R Z, Wang N N, Huang W, Wang J P 2020 Light Sci. Appl. 9 89Google Scholar

    [32]

    Woo R W 1902 Proc. Phys. Soc. London 18 269Google Scholar

    [33]

    Zhang X L, Xu B, Wang W G, Liu S, Zheng Y J, Chen S M, Wang K, Sun X W 2017 ACS. Appl. Mater. Inter. 9 4926Google Scholar

    [34]

    Chen P, Xiong Z Y, Wu X Y, Shao M, Meng Y, Xiong Z H, Gao C H 2017 J. Phys. Chem. Lett. 8 3961Google Scholar

    [35]

    Zhang Y H, Sun H Q, Zhang S, Li S P, Wang X, Zhang X, Liu T Y, Guo Z Y 2019 Opt. Mater. 89 563Google Scholar

    [36]

    Mao J, Sha W E I, Zhang H, Ren X G, Zhuang J Q, Roy V A L, Wong K S, Choy W C H 2017 Adv. Funct. Mater. 27 1606525Google Scholar

    [37]

    Jeon S H, Zhao L F, Jung Y J, Kim J W, Kim S Y, Kang H, Jeong J H, Rand B P, Lee J H 2019 Small 15 1900135Google Scholar

    [38]

    Zhang Q P, Tavakoli M M, Gu L L, Zhang D Q, Tang L, Gao Y, Guo J, Lin Y J, Leung S F, Poddar S, Fu Y, Fan Z Y 2019 Nat. Commun. 10 727Google Scholar

    [39]

    Zhao L F, Lee K M, Roh K D, Khan S U Z, Rand B P 2019 Adv. Mater. 31 1805836Google Scholar

    [40]

    Lu J X, Feng W J, Mei G D, Sun J Y, Yan C Z, Zhang D, Lin K B, Wu D, Wang K, Wei Z H 2020 Adv. Sci. 7 2000689Google Scholar

  • 图 1  (a) PeLED器件中的光耦合损耗; (b)光在介质与空气界面的光学路径(垂直入射、折射、全反射)[19,20]

    Figure 1.  (a) Various kinds of light out-coupling losses in LEDs; (b) optical path of light at the interface between medium and air (vertical incidence, refringence, total reflection)[19,20].

    图 2  基于CsPbI3纳米晶的PeLED的器件结构示意图, 基底分别为ITO和Ag, 其中红色箭头表明该端电极为透明且为出光面[26]

    Figure 2.  Schematic diagram of the CsPbI3 nanocrystal-based LED with ITO and Ag bottom cathodes. Red arrows indicate on which side the respective devices are transparent and emit light[26].

    图 3  分别采用ITO和Au电极的PeLED (a)能级结构排列图; (b)电压-电流效率图[27]

    Figure 3.  PeLED with ITO and ultrathin Au electrode: (a) Energy band structure; (b) current efficiency-voltage curves[27].

    图 4  PeLED电极为ZnO-Ag-ZnO结构: (a) ZnO-Ag-ZnO结构示意图: 底部为ZnO, 中间为Ag层, 顶部为ZnO层; (b)电极分别为ITO和m-ZnO-Ag-ZnO的器件电压-电流效率图(插图显示了在5 V条件下器件的辐射性)[28]

    Figure 4.  PeLED with ZnO-Ag-ZnO electrode: (a) ZnO-Ag-ZnO structure: bottom wetting ZnO layer, middle patterned Ag layer and top continuous ZnO layer; (b) current efficiency-voltage curves with ITO and ZnO-Ag-ZnO electrode (insets show the magnified view of emission uniformity on 5 V)[28].

    图 5  阳极为AnoHIL的PeLED器件 (a)能级结构排列图; (b) PeLED 为不同电极的电压-外量子效率曲线[29]

    Figure 5.  PeLEDs with AnoHIL anode: (a) Energy band diagram; (b) voltage-EQE curves of PeLEDs fabricated on various anodes[29].

    图 6  掺杂Ag纳米棒的PeLED的透射电子显微镜截面图及器件结构示意图[33]

    Figure 6.  Transmission electron microscope image of cross section and schematic diagram of device structure for PeLED with Ag nanorods[33].

    图 7  FDTD模拟Au-Ag NP的电磁场分布[35]

    Figure 7.  FDTD simulation of the electromagnetic field distributed around the Au-Ag NP[35].

    图 8  基于MAPbI3的PeLED (a)光栅在PEDOT:PSS/ITO衬底上的实像; (b)电流密度-辐射特性曲线; (c)电压-外量子效率曲线[36]

    Figure 8.  PeLED based on MAPbI3: (a) Real image of grating on PEDOT:PSS/ITO substrate; (b) the curves of current density-radiance characteristics; (c) the curves of voltage-EQE[36].

    图 9  PeLED带有纳米孔阵列、有机传输层的分子结构以及该结构的扫描电子显微镜[37]

    Figure 9.  Device structure of PeLEDs with NHA, the molecular structure of organic transportin layers, and scanning electron microscope images of the structure[37].

    图 10  带有AAM结构的PeLED (a)器件结构示意图; (b) PeLED带有ND, NW结构的电场强度; (c) PeLED带有ND结构的电场强度[38]

    Figure 10.  PeLED with AAM structure: (a) Device schematic; (b) electric field intensity of PeLED with ND, NW structure; (c) electric field intensity of PeLED with ND structure[38].

    图 11  基于CsPbBr3的PeLED压印纳米结构制备过程[12]

    Figure 11.  Fabrication process of a CsPbBr3 PeLED with the imprinted nanostructures[12].

    图 12  钙钛矿发光层为亚微米结构的PeLED结构示意图, 光线A, B, C表示光线原先束缚于发射层中, 通过亚微米结构进行光提取[11]

    Figure 12.  Device schematic with submicrometre structure. Rays A, B and C, which represent light trapped in devices with a continuous emitting layer, can be extracted by the submicrometre structure[11].

    图 13  在厚度不同的钙钛矿发光层条件下外量子效率和电流密度的关系图, 钙钛矿发光层材料分别为(a) MAPbI3, (b) Cs0.2FA0.8PbI2.8Br0.2, (c) FAPbI3, (d) FAPbBr3[39]

    Figure 13.  EQE vs. current density of PLEDs based on (a) MAPbI3, (b) Cs0.2FA0.8PbI2.8Br0.2, (c) FAPbI3, (d) FAPbBr3 thin films with various thicknesses[39].

    表 1  PeLEDs光提取研究进展

    Table 1.  Research progress of PeLEDs light extraction.

    发表
    时间
    器件结构光提取方法CEmax/cd·A–1EQEmax/%最大亮度/cd·m–2寿命参数T50参考
    文献
    20174LG/Buf-HIL/MAPbBr3/TPBi/LiF/Al电极18.03.813000[25]
    2018Ag/(ZnO/PEI)/CsPbI3NC /TCTA/(MoO3/Au/MoO3)电极11.21106[26]
    2018Au/HIL/MAPbBr3/TPBi/LiF/AL电极3.311270[27]
    2019m-ZAgZ/HAT-CN/TAPC/CsPbBr3/TPBi/Liq/Al电极7.214846[28]
    2018Glass/AnoHIL/MAPbBr3/TPBi/Li/AL电极428.66[29]
    2020Glass/Au/ZnO/MQW perovskite/
    TFB/MoO3/Au
    电极
    微腔
    20.2[31]
    2017Glass/ITO/PEDOT:PSS/(Agrods NPB)/
    CsPbBr3 NC/TPBi/LiF/Al
    激元1.420.438911[33]
    2017Au NPs/PVK:MAPbBr3:TPBi/
    TPBi/Cs2CO3/Al
    激元7.641.8316050[34]
    2019Glass/NHAs/ITO/Poly-TPD/MAPbI3/TPBi/LiF/Al微纳0.0120.53 W·sr –1·m–2[36]
    2019Glass/Epoxy/AAM(TiO2)/ITO/PEDOT:PSS/
    BA: CH3 NH3 PbBr3/F8/Ca/Ag
    微纳17.548668120 s[38]
    2019Glass/ITO/ZnO/PEDOT:PSS/
    CsPbBr3/TPBi/LiF/Al
    微纳88.728.2~25000[12]
    2018Glass/ITO/ZnO/ZnO-PEIE/
    FAPbI3/TFB/MoOx/Au
    薄膜形貌20.7390 W·sr –1· m–220 h[11]
    2020Glass/ITO/ PEDOT:PSS/Perovskite/
    B3PyMPM/LiF/Al
    器件结构17.679700[39]
    DownLoad: CSV
    Baidu
  • [1]

    Wang J P, Wang N N, Jin Y Z, Si J J, Tan Z K, Du H, Cheng L, Dai X L, Bai S, He H P, Ye Z Z, Lai M L, Friend R H, Huang W 2015 Adv. Mater. 27 2311Google Scholar

    [2]

    Meng F Y, Liu X Y, Chen Y X, Cai X Y, Li M K, Shi T T, Chen Z M, Chen D C, Yip H L, Ramanan C, Blom P W M, Su S J 2020 Adv. Funct. Mater. 2020 1910167Google Scholar

    [3]

    Lee S J, Park J H, Nam Y S, Lee B R, Zhao B D, Nuzzo D D, Jung E D, Jeon H, Kim J Y, Jeong H Y, Friend R H, Song M H 2018 ACS Nano 12 3417Google Scholar

    [4]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [5]

    Quan L N, Arquer F P G D, Sabatini R P, Sargent E H 2018 Adv. Mater. 30 1801996Google Scholar

    [6]

    Wei Z H, Xing J 2019 J. Phys. Chem. Lett. 10 3035Google Scholar

    [7]

    Zou Y, Yuan Z, Bai S, Gao F, Sun B 2019 Mater. Today Nano 5 100028Google Scholar

    [8]

    Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G 2016 Adv. Mater. 28 6804Google Scholar

    [9]

    Park M H, Park J, Lee J, So H S, Kim H, Jeong S H, Han T H, Wolf C, Lee H, Yoo S, Lee T W 2019 Adv. Funct. Mater. 29 1902017Google Scholar

    [10]

    Fang Z B, Chen W J, Shi Y L, Zhao J, Chu S L, Zhang J, Xiao Z G 2020 Adv. Funct. Mater. 30 1909754Google Scholar

    [11]

    Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z, Kong D C, Dai D X, Jin Y Z, Li G Q, Li H, Peng Q M, Wang J P, Huang W 2018 Nature 562 249Google Scholar

    [12]

    Shen Y, Cheng L P, Li Y Q, Li W, Chen J D, Lee S T, Tang J X 2019 Adv. Mater. 31 1901517Google Scholar

    [13]

    Lin K B, Xing J, Quan L N, Arquer F P G D, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H, Wei Z H 2018 Nature 562 245Google Scholar

    [14]

    Zhao B D, Bai S, Kim V, Lamboll R, Shivanna R, Auras F, Richter J M, Yang L, Dai L J, Alsari M, She X J, Liang L S, Zhang J B, Lilliu S, Gao P, Snaith H J, Wang J P, Greenham N C, Friend R H, Di D W 2018 Nat. Photonics 12 783Google Scholar

    [15]

    Zhao X F, Tan Z K 2019 Nat. Photonics 4851 50

    [16]

    Xu W D, Hu Q, Bai S, Bao C X, Miao Y F, Yuan Z C, Borzda T, Barker A J, Tyukalova E, Hu Z J, Kawecki M, Wang H Y, Yan Z B, Liu X J, Shi X B, Uvdal K, Fahlman M, Zhang W J, Duchamp M, Liu J M, Petrozza A, Wang J P, Liu L M, Huang W, Gao F 2019 Nat. Photonics 13 418

    [17]

    Bao C X, Xu W D, Yang J, Bai S, Teng P P, Yang Y, Wang J P, Zhao N, Zhang W J, Huang W, Gao F 2020 Nat. Electron. 3 156Google Scholar

    [18]

    方晓敏, 江孝伟, 赵建伟 2018 激光与光电子学进展 55 082302Google Scholar

    Fang X M, Jiang X W, Zhao J W 2018 Laser Optoelectronics Progress 55 082302Google Scholar

    [19]

    Hong K, Lee J L 2011 Electron. Mater. Lett. 7 77Google Scholar

    [20]

    Meng S S, Li Y Q, Tang J X 2018 Org. Electron. 61 351Google Scholar

    [21]

    李国龙, 黄卓寅, 李衎, 甄红宇, 沈伟东, 刘旭 2011 60 077207Google Scholar

    Li G L, Huang Z Y, Li K, Zhen H Y, Shen W D, Liu X 2011 Acta. Phys. Sin. 60 077207Google Scholar

    [22]

    Hsu C W, Lee Y C, Chen H L, Chou Y F 2012 Photonic. Nanostruct. 10 523Google Scholar

    [23]

    Gao C H, Zhang Y, Ma X J, Yu F X, Jia Y L, Lei Y L, Chen P, Sun W W, Xiong Z H 2018 Org. Electron. 58 88Google Scholar

    [24]

    Zhou Y, Wu G M, Gao D W, Xing G J, Zhu Y Y, Zhang Z Q, Cao Y 2012 Adv. Mat. Res. 465 268Google Scholar

    [25]

    Seo H K, Kim H, Lee J, Park M H, Jeong S H, Kim Y H, Kwon S J, Han T H, Yoo S, Lee T W 2017 Adv. Mater. 29 1605587Google Scholar

    [26]

    Lu M, Zhang X Y, Bai X, Wu H, Shen X Y, Zhang Y, Zhang W, Zheng W T, Song H W, Yu W W, Rogach A L 2018 ACS Energy Lett. 3 1571Google Scholar

    [27]

    Liu Y S, Guo S, Yi F S, Feng J, Sun H B 2018 Opt. Lett. 43 5524Google Scholar

    [28]

    Liu Y F, Ding T, Wang H R, Zhang Y T, Chen C, Chen X T, Duan Y 2020 Appl. Surf. Sci. 504 144442Google Scholar

    [29]

    Jeong S H, Woo S H, Han T H, Park M H, Cho H, Kim Y H, Cho H, Kim Y H, Cho H, Kim H, Yoo S, Lee T W 2017 Npg. Asia. Mater. 9 e411Google Scholar

    [30]

    Wu H, Zhang Y, Zhang X Y, Lu M, Sun C, Bai X, Zhang T Q, Sun G, Yu W W 2018 Adv. Electron. Mater. 4 1700285Google Scholar

    [31]

    Miao Y F, Cheng L, Zou W, Gu L H, Zhang J, Guo Q, Peng Q M, Xu M M, He Y R, Zhang S T, Cao Y, Li R Z, Wang N N, Huang W, Wang J P 2020 Light Sci. Appl. 9 89Google Scholar

    [32]

    Woo R W 1902 Proc. Phys. Soc. London 18 269Google Scholar

    [33]

    Zhang X L, Xu B, Wang W G, Liu S, Zheng Y J, Chen S M, Wang K, Sun X W 2017 ACS. Appl. Mater. Inter. 9 4926Google Scholar

    [34]

    Chen P, Xiong Z Y, Wu X Y, Shao M, Meng Y, Xiong Z H, Gao C H 2017 J. Phys. Chem. Lett. 8 3961Google Scholar

    [35]

    Zhang Y H, Sun H Q, Zhang S, Li S P, Wang X, Zhang X, Liu T Y, Guo Z Y 2019 Opt. Mater. 89 563Google Scholar

    [36]

    Mao J, Sha W E I, Zhang H, Ren X G, Zhuang J Q, Roy V A L, Wong K S, Choy W C H 2017 Adv. Funct. Mater. 27 1606525Google Scholar

    [37]

    Jeon S H, Zhao L F, Jung Y J, Kim J W, Kim S Y, Kang H, Jeong J H, Rand B P, Lee J H 2019 Small 15 1900135Google Scholar

    [38]

    Zhang Q P, Tavakoli M M, Gu L L, Zhang D Q, Tang L, Gao Y, Guo J, Lin Y J, Leung S F, Poddar S, Fu Y, Fan Z Y 2019 Nat. Commun. 10 727Google Scholar

    [39]

    Zhao L F, Lee K M, Roh K D, Khan S U Z, Rand B P 2019 Adv. Mater. 31 1805836Google Scholar

    [40]

    Lu J X, Feng W J, Mei G D, Sun J Y, Yan C Z, Zhang D, Lin K B, Wu D, Wang K, Wei Z H 2020 Adv. Sci. 7 2000689Google Scholar

  • [1] Zhang Jun-Ting, Ji Ke, Xie Yu, Li Chao. Perovskite-based two-dimensional ferromagnet Sr2RuO4 monolayer. Acta Physica Sinica, 2024, 73(22): 226101. doi: 10.7498/aps.73.20241042
    [2] Yu Yi, An Zhi-Dong, Cai Xiao-Yi, Guo Ming-Lei, Jing Cheng-Bin, Li Yan-Qing. Recent progress of tin-based perovskites and their applications in light-emitting diodes. Acta Physica Sinica, 2021, 70(4): 048503. doi: 10.7498/aps.70.20201284
    [3] Li Xue, Cao Bao-Long, Wang Ming-Hao, Feng Zeng-Qin, Chen Shu-Fen. Perovskite light-emitting diode based on combination of modified hole-injection layer and polymer composite emission layer. Acta Physica Sinica, 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [4] Xi Yu-Ying, Han Yue, Li Guo-Hui, Zhai Ai-Ping, Ji Ting, Hao Yu-Ying, Cui Yan-Xia. Application of heterostructures in halide perovskite photovoltaic devices. Acta Physica Sinica, 2020, 69(16): 167804. doi: 10.7498/aps.69.20200591
    [5] Fan Qin-Hua, Zu Yan-Qing, Li Lu, Dai Jin-Fei, Wu Zhao-Xin. Research progress of stability of luminous lead halide perovskite nanocrystals. Acta Physica Sinica, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [6] Wu Jia-Long, Dou Yong-Jiang, Zhang Jian-Feng, Wang Hao-Ran, Yang Xu-Yong. Perovskite light-emitting diodes based on solution-processed metal-doped nickel oxide hole injection layer. Acta Physica Sinica, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [7] Wu Hai-Yan, Tang Jian-Xin, Li Yan-Qing. Efficient and stable blue perovskite light emitting diodes based on defect passivation. Acta Physica Sinica, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [8] Fu Peng-Fei, Yu Dan-Ni, Peng Zi-Jian, Gong Jin-Kang, Ning Zhi-Jun. Perovskite solar cells passivated by distorted two-dimensional structure. Acta Physica Sinica, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [9] Li Zhen-Chao, Chen Zi-Ming, Zou Guang-Rui-Xing, Yip Hin-Lap, Cao Yong. Applications of organic additives in metal halide perovskite light-emitting diodes. Acta Physica Sinica, 2019, 68(15): 158505. doi: 10.7498/aps.68.20190307
    [10] Huang Wei, Li Yue-Long, Ren Hui-Zhi, Wang Peng-Yang, Wei Chang-Chun, Hou Guo-Fu, Zhang De-Kun, Xu Sheng-Zhi, Wang Guang-Cai, Zhao Ying, Yuan Ming-Jian, Zhang Xiao-Dan. Perovskite light-emitting diodes based on n-type nanocrystalline silicon oxide electron injection layer. Acta Physica Sinica, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [11] Qu Zi-Han, Chu Ze-Ma, Zhang Xing-Wang, You Jing-Bi. Research progress of efficient green perovskite light emitting diodes. Acta Physica Sinica, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [12] Shi Qiang, Li Lu-Ping, Zhang Yong-Hui, Zhang Zi-Hui, Bi Wen-Gang. Identifying the influence of GaN/InxGa1-xN type last quantum barrier on internal quantum efficiency for III-nitride based light-emitting diode. Acta Physica Sinica, 2017, 66(15): 158501. doi: 10.7498/aps.66.158501
    [13] Yang Xu-Dong, Chen Han, Bi En-Bing, Han Li-Yuan. Key issues in highly efficient perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [14] Chen Zhan-Xu, Wan Wei, He Ying-Ji, Chen Geng-Yan, Chen Yong-Zhu. Light-extraction enhancement of GaN-based LEDs by closely-packed nanospheres monolayer. Acta Physica Sinica, 2015, 64(14): 148502. doi: 10.7498/aps.64.148502
    [15] Chen Xin-Lian, Kong Fan-Min, Li Kang, Gao Hui, Yue Qing-Yang. Improvement of light extraction efficiency of GaN-based blue light-emitting diode by disorder photonic crystal. Acta Physica Sinica, 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [16] Li Fei, Xiao Liu, Liu Pu-Kun, Yuan Guang-Jiang, Yi Hong-Xia, Wan Xiao-Sheng. Study on estimating efficiency of multistage depressed collector in traveling wave tubes. Acta Physica Sinica, 2012, 61(10): 102901. doi: 10.7498/aps.61.102901
    [17] Yue Qing-Yang, Kong Fan-Min, Li Kang, Zhao Jia. Study on the light extraction efficiency of GaN-based light emitting diode by using the defects of the photonic crystals. Acta Physica Sinica, 2012, 61(20): 208502. doi: 10.7498/aps.61.208502
    [18] Lin Han, Liu Shou, Zhang Xiang-Su, Liu Bao-Lin, Ren Xue-Chang. Enhanced external quantum efficiency of light emitting diodes by fabricating two-dimensional photonic crystal sapphire substrate with holographic technique. Acta Physica Sinica, 2009, 58(2): 959-963. doi: 10.7498/aps.58.959
    [19] Chen Jian, Li Xiao-Li, Li Hai-Hua, Wang Qing-Kang. Research of LED light extraction efficiency of photonic crystal with square and hexagonal lattice. Acta Physica Sinica, 2009, 58(9): 6216-6221. doi: 10.7498/aps.58.6216
    [20] Li Bing-Qian, Liu Yu-Hua, Feng Yu-Chun. The power dissipation of equivalent series resistance and its influence on lumen efficiency of GaN based high power light-emitting diodes. Acta Physica Sinica, 2008, 57(1): 477-481. doi: 10.7498/aps.57.477
Metrics
  • Abstract views:  8911
  • PDF Downloads:  274
  • Cited By: 0
Publishing process
  • Received Date:  18 May 2020
  • Accepted Date:  01 July 2020
  • Available Online:  12 November 2020
  • Published Online:  05 November 2020

/

返回文章
返回
Baidu
map