-
卤化铅钙钛矿由于具有高吸收系数、高载流子迁移率、高缺陷容忍度和高光致发光效率等优越的光电子性能, 近年来引起了人们的广泛关注. 然而, 可能阻碍其商业应用的关键是铅元素的存在引起的毒性问题. 为了解决这一毒性问题, 谨慎而有策略地用其他无毒候选元素替代Pb2+是一个很有前途的方向. 锡具有和铅相似的结构和性质, 是目前最有希望替代铅的元素, 这也引起了研究者们广泛的兴趣及进一步的研究. 本文综述了近年来锡基钙钛矿的研究进展及其在发光二极管中的应用. 首先, 介绍了一些适合应用于发光二极管的锡基钙钛矿材料的合成方法. 然后, 分析了不同价态下锡基钙钛矿的晶体结构和光电性质. 在此基础上讨论了锡基钙钛矿材料在发光器件中的应用, 并总结了提高锡基钙钛矿性能的一些措施. 最后提出了锡基钙钛矿当前遇到的重大挑战, 并提出了可能的解决方案, 有助于实现高性能锡基卤化物钙钛矿发光二极管. 基于这篇综述, 以期对锡基卤化物材料及其在发光二极管中的应用有深入了解, 进而推动锡基钙钛矿发光二极管的发展.Lead halide perovskites have aroused widespread interest in recent years due to their superior optoelectronic properties, such as high absorption coefficient, high charge carrier mobility, high defect tolerance and high photoluminescence (PL) efficiency. However, one critical problem which potentially hampers their commercial applications is the toxicity caused by lead. To address this toxicity problem, a careful and strategic replacement of Pb2+ with other nontoxic candidate elements represents a promising direction. Tin (Sn), currently the most promising alternative to lead due to its structure and properties, has received extensiveattention. In this review, some recent developments of Sn-based perovskites and their applications in light-emitting diodes are summarized. Firstly, some synthesis methods of Sn-based perovskite materials are introduced. Then, the crystal structures and photoelectric properties of Sn-perovskites in different valence states are analyzed. Then, the potential application of Sn-based perovskite materials in light-emitting devices is presented and some methods to improve the performance of Sn-based PeLEDs are also summarized. Finally, the significant challenges in these Sn-based PeLEDs are pointed out and their possible solutions are suggested. It is expected that this review can conduce to an in-depth understanding of Sn-based halide materials and their application in PeLEDs.
[1] Zhao X, Ng J D A, Friend R H, Tan Z K 2018 ACS Photonics 5 3866
Google Scholar
[2] Lin K B, Xing J, Quan L N, de Arquer F P G, Gong X W, Lu J X, Xie L Q, Zhao W, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H, Wei Z H 2018 Nature 562 245
Google Scholar
[3] Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J P, Huang W 2018 Nature 562 249
Google Scholar
[4] Shen Y, Cheng L P, Li Y Q, Li W, Chen J D, Lee S T, Tang J X 2019 Adv. Mater. 31 1901517
Google Scholar
[5] Xu W D, Hu Q, Bai S, Bao C X, Miao Y F, Yuan Z C, Borzda T, Barker A J, Tyukalova E, Hu Z J, Kawecki M, Wang H Y, Yan Z B, Liu X J, Shi X B, Uvdal K, Fahlman M, Zhang W J, Duchamp M, Liu J M, Petrozza A, Wang J P, Liu L M, Huang W, Gao F 2019 Nat. Photonics 13 418
[6] Hou L, Zhu Y H, Zhu J R, Li C Z 2019 J. Phys. Chem. C 123 31279
Google Scholar
[7] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687
Google Scholar
[8] Cho H C, Wolf C, Kim J S, Yun H J, Bae J S, Kim H, Heo J M, Ahn S, Lee T W 2017 Adv. Mater. 29 1700579
Google Scholar
[9] Lu M, Zhang Y, Wang S X, Guo J, Yu W W, Rogach A L 2019 Adv. Funct. Mater. 29 1902008
Google Scholar
[10] Xiao Z, Yan Y F 2017 Adv. Energy Mater. 7 1701136
Google Scholar
[11] Gratzel M 2014 Nat. Mater. 13 838
Google Scholar
[12] Yin W J, Yang J H, Kang J, Yan Y F, Wei S H 2015 J. Mater. Chem. A. 3 8926
Google Scholar
[13] Zhao Y, Li C L, Jiang J Z, Wang B, Shen L 2020 Small 16 2001534
Google Scholar
[14] Li C L, Lu J R, Zhao Y, Sun L Y, Wang G X, Ma Y, Zhang S M, Zhou J R, Shen L, Huang W 2019 Small 15 1903599
Google Scholar
[15] Zhao Y, Li C L, Shen L 2019 Info. Mat. 1 164
Google Scholar
[16] Li C L, Wang H L, Wang F, Li T F, Xu M J, Wang H, Wang Z, Zhan X W, Hu W D, Shen L 2020 Light Sci. Appl. 9 31
Google Scholar
[17] Shen Y, Liu Y C, Ye H C, Zheng Y T, Wei Q, Xia Y D, Chen Y H, Zhao K, Huang W, Liu S F 2020 Angew. Chem. Int. Ed. 59 14896
Google Scholar
[18] Pan W, Yang B, Niu G, Xue K H, Du X, Yin L, Zhang M, Wu H, Miao X S, Tang J 2019 Adv. Mater. 31 1904405
Google Scholar
[19] Luo T, Zhang Y, Xu Z, Niu T, Wen J, Lu J, Jin S, Liu S F, Zhao K 2019 Adv. Mater. 31 1903848
Google Scholar
[20] Sani F, Shafie S, Lim H N, Musa A O 2018 Materials 11 1008
Google Scholar
[21] Wu C C, Zhang Q H, Liu G H, Zhang Z H, Wang D, Qu B, Chen Z J, Xiao L X 2020 Adv. Energy Mater. 10 1902496
Google Scholar
[22] Luo J J, Hu M C, Niu G D, Tang J 2019 ACS Appl. Mater. Interfaces 11 31575
Google Scholar
[23] Igbari F, Wang Z K, Liao L S 2019 Adv. Energy Mater. 9 1803150
Google Scholar
[24] Ghosh S, Pradhan B 2019 Chem. Nano. Mat. 5 300
Google Scholar
[25] Mao L L, Stoumpos C C, Kanatzidis M G 2019 J. Am. Chem. Soc. 141 1171
Google Scholar
[26] Cheng L, Jiang T, Cao Y, Yi C, Wang N N, Huang W, Wang J P 2019 Adv. Mater. 32 1904163
Google Scholar
[27] Grancini G, Nazeeruddin M K 2019 Nat. Reviews Mater. 4 4
Google Scholar
[28] Babayigit A, Ethirajan A, Muller M, Conings B 2016 Nat. Mater. 15 247
Google Scholar
[29] Fan Q Q, Biesold-McGee G V, Ma J Z, Xu Q N, Pan S, Peng J, Lin Z Q 2020 Angew. Chem. Int. Ed. 59 1030
Google Scholar
[30] Sun J, Yang J, Lee J I, Cho J H, Kang M S 2018 J. Phys. Chem. Lett. 9 1573
Google Scholar
[31] Ke W J, Kanatzidis M G 2019 Nat. Commun. 10 965
Google Scholar
[32] Ke W J, Stoumpos C C, Kanatzidis M G 2019 Adv. Mater. 31 1803230
Google Scholar
[33] Meng X Y, Lin J B, Liu X, He X, Wang Y, Noda T, Wu T H, Yang X D, Han L Y 2019 Adv. Mater. 31 1903721
Google Scholar
[34] Liao Y Q, Liu H F, Zhou W J, Yang D W, Shang Y Q, Shi Z F, Li B H, Jiang X Y, Zhang L J, Quan L N, Quintero-Bermudez R, Sutherland B R, Mi Q X, Sargent E H, Ning Z J 2017 J. Am. Chem. Soc. 139 6693
Google Scholar
[35] Hoefler S F, Trimmel G, Rath T 2017 Monatsh Chem. 148 795
Google Scholar
[36] Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019
Google Scholar
[37] Fang Z B, Chen W J, Shi Y L, Zhao J, Chu S L, Zhang J, Xiao Z G 2020 Adv. Funct. Mater. 30 1909754
Google Scholar
[38] Fu P F, Huang M L, Shang Y Q, Yu N, Zhou H L, Zhang Y B, Chen S Y, Gong J K, Ning Z J 2018 ACS Appl. Mater. Interfaces 10 34363
Google Scholar
[39] Liao Y, Shang Y Q, Wei Q, Wang H, Ning Z J 2020 J. Phys. D: Appl. Phys. 53 414005
Google Scholar
[40] Zhang X T, Wang C C, Zhang Y, Zhang X Y, Wang S X, Lu M, Cui H N, Kershaw S V, Yu W W, Rogach A L 2018 ACS Energy Lett. 4 242
Google Scholar
[41] Lanzetta L, Marin-Beloqui J M, Sanchez-Molina I, Ding D, Haque S A 2017 ACS Energy Lett. 2 1662
Google Scholar
[42] Wang Y, Zou R M, Chang J, Fu Z W, Cao Y, Zhang L D, Wei Y Q, Kong D C, Zou W, Wen K C, Fan N, Wang N N, Huang W, Wang J P 2019 J. Phys. Chem. Lett. 10 453
Google Scholar
[43] El Ajjouri Y, Locardi F, Gélvez-Rueda M C, Prato M, Sessolo M, Ferretti M, Grozema F C, Palazon F, Bolink H J 2019 Energy Technol. 8 1900788
Google Scholar
[44] Li J H, Tan Z F, Hu M C, Chen C, Luo J J, Li S R, Gao L, Xiao Z W, Niu G D, Tang J 2019 Front. Optoelectron. 12 352
Google Scholar
[45] Lin T W, Su C, Lin C C 2019 J. Inf. Disp. 20 209
Google Scholar
[46] Tan Z F, Li J H, Zhang C, Li Z, Hu Q S, Xiao Z W, Kamiya T, Hosono H, Niu G D, Lifshitz E, Cheng Y B, Tang J 2018 Adv. Funct. Mater. 28 1801131
Google Scholar
[47] Han P G, Mao X, Yang S Q, Zhang F, Yang B, Wei D H, Deng W Q, Han K 2019 Angew. Chem. Int. Ed. 58 17231
Google Scholar
[48] Luo J J, Wang X M, Li S R, Liu J, Guo Y M, Niu G D, Yao L, Fu Y H, Gao L, Dong Q S, Zhao C Y, Leng M Y, Ma F Y, Liang W X, Wang L D, Jin S Y, Han J B, Zhang L J, Etheridge J, Wang J B, Yan Y F, Sargent E H, Tang J 2018 Nature 563 541
Google Scholar
[49] Hao F, Stoumpos C C, Guo P J, Zhou N J, Marks T J, Chang R P, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 11445
Google Scholar
[50] Liu J W, Ozaki M, Yakumaru S, Handa T, Nishikubo R, Kanemitsu Y, Saeki A, Murata Y, Murdey R, Wakamiya A 2018 Angew. Chem. Int. Ed. 57 13221
Google Scholar
[51] Zhu H L, Xiao J Y, Mao J, Zhang H, Zhao Y, Choy W C H 2017 Adv. Funct. Mater. 27 1605469
Google Scholar
[52] Moghe D, Wang L L, Traverse C J, Redoute A, Sponseller M, Brown P R, Bulović V, Lunt R R 2016 Nano Energy 28 469
Google Scholar
[53] Jung M C, Raga S R, Qi Y B 2016 RSC Adv. 6 2819
Google Scholar
[54] Funabiki F, Toda Y, Hosono H 2018 J. Phy. Chem. C 122 10749
Google Scholar
[55] Xi J, Wu Z X, Jiao B, Dong H, Ran C X, Piao C C, Lei T, Song T B, Ke W J, Yokoyama T, Hou X, Kanatzidis M G 2017 Adv. Mater. 29 1606964
Google Scholar
[56] Yokoyama T, Cao D H, Stoumpos C C, Song T B, Sato Y, Aramaki S, Kanatzidis M G 2016 J. Phys. Chem. Lett. 7 776
Google Scholar
[57] Lee B, Shin B, Park B 2019 Electron. Mater. Lett. 15 192
Google Scholar
[58] Hong W L, Huang Y C, Chang C Y, Zhang Z C, Tsai H R, Chang N Y, Chao Y C 2016 Adv. Mater. 28 8029
Google Scholar
[59] Wang Z B, Wang F Z, Zhao B, Qu S N, Hayat T, Alsaedi A, Sui L Z, Yuan K J, Zhang J Q, Wei Z X, Tan Z A 2020 J. Phys. Chem. Lett. 11 1120
Google Scholar
[60] Jellicoe T C, Richter J M, Glass H F, Tabachnyk M, Brady R, Dutton S E, Rao A, Friend R H, Credgington D, Greenham N C, Bohm M L 2016 J. Am. Chem. Soc. 138 2941
Google Scholar
[61] Wang H C, Wang W G, Tang A C, Tsai H Y, Bao Z, Ihara T, Yarita N, Tahara H, Kanemitsu Y, Chen S M, Liu R S 2017 Angew. Chem. Int. Ed. 56 13650
Google Scholar
[62] Zhou C K, Tian Y, Wang M C, Rose A, Besara T, Doyle N K, Yuan Z, Wang J C, Clark R, Hu Y Y, Siegrist T, Lin S C, Ma B 2017 Angew. Chem. Int. Ed. 56 9018
Google Scholar
[63] Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G 2012 J. Am. Chem. Soc. 134 8579
Google Scholar
[64] Benin B M, Dirin D N, Morad V, Wörle M, Yakunin S, Rainò G, Nazarenko O, Fischer M, Infante I, Kovalenko M V 2018 Angew. Chem. Int. Ed. 57 11329
Google Scholar
[65] Yuan F, Xi J, Dong H, Xi K, Zhang W W, Ran C X, Jiao B, Hou X, Jen A K Y, Wu Z X 2018 Phys. Status Solidi RRL 12 1800090
Google Scholar
[66] Zhou J, Luo J J, Rong X M, Wei P J, Molokeev M S, Huang Y, Zhao J, Liu Q L, Zhang X W, Tang J, Xia Z G 2019 Adv. Opt. Mater. 7 1900139
Google Scholar
[67] Li C, Lu X G, Ding W Z, Feng L M, Gao Y H, Guo Z M 2008 Acta Cryst. B 64 702
Google Scholar
[68] Yin H, Xian Y M, Zhang Y L, Li W Z, Fan J D 2019 Sol. RRL 3 1900148
Google Scholar
[69] Scaife D E, Weller P F, Fisher W G 1974 J. Solid State Chem. 9 308
Google Scholar
[70] Lai M L, Tay T Y, Sadhanala A, Dutton S E, Li G, Friend R H, Tan Z K 2016 J. Phys. Chem. Lett. 7 2653
Google Scholar
[71] Bernal C, Yang K S 2014 J.Phy. Chem. C 118 24383
Google Scholar
[72] Goyal A, McKechnie S, Pashov D, Tumas W, van Schilfgaarde M, Stevanović V 2018 Chem. Mater. 30 3920
Google Scholar
[73] Liu D, Sa R, Wang J, Wu K C 2019 J. Clust. Sci. 31 1103
[74] Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G 2014 Nat. Photonics 8 489
Google Scholar
[75] Huang L Y, Lambrecht W R L 2013 Phys. Rev. B 88 165203
Google Scholar
[76] Pisanu A, Coduri M, Morana M, Ciftci Y O, Rizzo A, Listorti A, Gaboardi M, Bindi L, Queloz V I E, Milanese C, Grancini G, Malavasi L 2020 J. Mater. Chem. A 8 1875
Google Scholar
[77] Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635
Google Scholar
[78] Peedikakkandy L, Bhargava P 2016 RSC Adv. 6 19857
Google Scholar
[79] Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G 2012 JACS 134 8579
[80] Takahashi Y, Obara R, Lin Z Z, Takahashi Y, Naito T, Inabe T, Ishibashi S, Terakura K 2011 Dalton Trans. 40 5563
Google Scholar
[81] Lee B, Stoumpos C C, Zhou N, Hao F, Malliakas C, Yeh C Y, Marks T J, Kanatzidis M G, Chang R P 2014 J. Am. Chem. Soc. 136 15379
Google Scholar
[82] Wang F, Ma J L, Xie F Y, Li L K, Chen J, Fan J, Zhao N 2016 Adv. Funct. Mater. 26 3417
Google Scholar
[83] Qian L, Sun Y L, Wu M M, Li C, Xie D, Ding L M, Shi G Q 2018 Nanoscale 10 6837
Google Scholar
[84] Lin J T, Liao C C, Hsu C S, Chen D G, Chen H M, Tsai M K, Chou P T, Chiu C W 2019 J. Am. Chem. Soc. 141 10324
Google Scholar
[85] Martinez-Sarti L, Jo S H, Kim Y H, Sessolo M, Palazon F, Lee T W, Bolink H J 2019 Nanoscale 11 12793
Google Scholar
[86] Zhou C K, Tian Y, Yuan Z, Lin H, Chen B, Clark R, Dilbeck T, Zhou Y, Hurley J, Neu J, Besara T, Siegrist T, Djurovich P, Ma B 2017 ACS Appl. Mater. Interfaces 9 44579
Google Scholar
[87] Zhou C K, Lin H R, Tian Y, Yuan Z, Clark R, Chen B H, van de Burgt L J, Wang J C, Zhou Y, Hanson K, Meisner Q J, Neu J, Besara T, Siegrist T, Lambers E, Djurovich P, Ma B 2018 Chem. Sci. 9 586
Google Scholar
[88] Maughan A E, Ganose A M, Bordelon M M, Miller E M, Scanlon D O, Neilson J R 2016 J. Am. Chem. Soc. 138 8453
Google Scholar
[89] Zimmermann I, Aghazada S, Nazeeruddin M K 2019 Angew. Chem. Int. Ed. 58 1072
Google Scholar
[90] Maughan A E, Ganose A M, Candia A M, Granger J T, Scanlon D O, Neilson J R 2018 Chem. Mater. 30 472
Google Scholar
[91] Maughan A E, Ganose A M, Almaker M A, Scanlon D O, Neilson J R 2018 Chem. Mater. 30 3909
Google Scholar
[92] Zhang X L, Cao W Y, Wang W G, Xu B, Liu S, Dai H T, Chen S M, Wang K, Sun X W 2016 Nano Energy 30 511
Google Scholar
[93] Gonzalez-Carrero S, Espallargas G M, Galian R E, Pérez-Prieto J 2015 J. Mater. Chem. A 3 14039
Google Scholar
[94] Wang X M, Meng W W, Liao W Q, Wang J B, Xiong R G, Yan Y F 2019 J. Phys. Chem. Lett. 10 501
Google Scholar
[95] Liang H Y, Yuan F L, Johnston A, Gao C C, Choubisa H, Gao Y, Wang Y K, Sagar L K, Sun B, Li P C, Bappi G, Chen B, Li J, Wang Y K, Dong Y T, Ma D X, Gao Y N, Liu Y C, Yuan M J, Saidaminov M I, Hoogland S, Lu Z H, Sargent E H 2020 Adv. Sci. 7 1903213
Google Scholar
[96] Kontos A G, Kaltzoglou A, Siranidi E, Palles D, Angeli G K, Arfanis M K, Psycharis V, Raptis Y S, Kamitsos E I, Trikalitis P N, Stoumpos C C, Kanatzidis M G, Falaras P 2017 Inorg. Chem. 56 84
Google Scholar
[97] Yang W F, Igbari F, Lou Y H, Wang Z K, Liao L S 2020 Adv. Energy Mater. 10 1902584
Google Scholar
[98] Xiao M, Gu S, Zhu P C, Tang M Y, Zhu W D, Lin R X, Chen C L, Xu W C, Yu T, Zhu J 2018 Adv. Opt. Mater. 6 1700615
Google Scholar
[99] Wong A B, Bekenstein Y, Kang J, Kley C S, Kim D, Gibson N A, Zhang D, Yu Y, Leone S R, Wang L W, Alivisatos A P, Yang P D 2018 Nano Lett. 18 2060
Google Scholar
[100] Zhu R, Luo Z, Chen H, Dong Y, Wu S T 2015 Opt. Express 23 23680
Google Scholar
[101] Hassan Y, Ashton O J, Park J H, Li G, Sakai N, Wenger B, Haghighirad A A, Noel N K, Song M H, Lee B R, Friend R H, Snaith H J 2019 J. Am. Chem. Soc. 141 1269
Google Scholar
[102] Yang J N, Song Y, Yao J S, Wang K H, Wang J J, Zhu B S, Yao M M, Rahman S U, Lan Y F, Fan F J, Yao H B 2020 J. Am. Chem. Soc. 142 2956
Google Scholar
[103] Tsai H, Nie W Y, Blancon J C, Stoumpos C C, Soe C M M, Yoo J, Crochet J, Tretiak S, Even J, Sadhanala A, Azzellino G, Brenes R, Ajayan P M, Bulovic V, Stranks S D, Friend R H, Kanatzidis M G, Mohite A D 2018 Adv. Mater. 30 1704217
Google Scholar
[104] Wang J, Shen H Z, Li W C, Wang S, Li J Z, Li D H 2019 Adv. Sci. 6 1802019
Google Scholar
[105] Lin H, Zhou C K, Tian Y, Siegrist T, Ma B W 2018 ACS Energy Lett. 3 54
Google Scholar
[106] Chen S, Shi G 2017 Adv. Mater. 29 1605448
Google Scholar
[107] Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N 2014 Adv. Mater. 26 7122
Google Scholar
[108] Song T B, Yokoyama T, Aramaki S, Kanatzidis M G 2017 ACS Energy Lett. 2 897
Google Scholar
[109] Li W Z, Li J W, Li J L, Fan J D, Mai Y H, Wang L D 2016 J. Mater. Chem. A 4 17104
Google Scholar
[110] Gao C, Jiang Y, Sun C, Han J, He T, Huang Y, Yao K, Han M, Wang X, Wang Y, Gao Y, Liu Y, Yuan M, Liang H 2020 ACS Photonics 7 1915
Google Scholar
[111] Hoshi H, Shigeeda N, Dai T 2016 Mater. Lett. 183 391
Google Scholar
[112] Ricciarelli D, Meggiolaro D, Ambrosio F, De Angelis F 2020 ACS Energy Lett. 5 2787
Google Scholar
[113] Meng X Y, Lin J B, Liu X, He X, Wang Y, Noda T, Wu T H, Yang X D, Han L Y 2019 Advanced Materials 31 1903721
-
图 2 (a) 二维锡基钙钛矿薄膜的制备过程示意图[59]; (b) Cs2SnCl6 纳米晶的形成和Mn2+离子掺杂机制示意图[45]; (c) 控制合成条件制备1D和0D溴化锡钙钛矿示意图[62]
Fig. 2. (a) Schematic illustration of the fabrication process for 2D tin-based perovskite thin films by solution method[59]; (b) schematic illustration of the Cs2SnCl6 NC formation and Mn2+ ion doping mechanisms[45]; (c) synthetic schemes for the preparations of 1D and 0D Sn bromide perovskites by carefully controlling synthetic conditions[62].
图 3 (a) ABX3钙钛矿晶体的晶胞[70]; (b) CsSnX3 (X = Cl, Cl0.5Br0.5, Br, Br0.5I0.5, I)钙钛矿纳米晶的PXRD谱图[60]; (c) 各种钙钛矿的容差因子(t); (d) 各种钙钛矿的八面体因子(μ)[68]
Fig. 3. (a) Unit cell of ABX3 perovskite crystal[70]; (b) PXRD spectra of CsSnX3 (X = Cl, Cl0.5Br0.5, Br, Br0.5I0.5, I) perovskite nanocrystals[60]; (c) tolerance factor (t) of various perovskites; (d) octahedral factor (μ) of various perovskites[68].
图 4 (a) 概述MA(Pb1–xSnx)I3中带隙变化起源的示意图, 阴影区域代表价带和导带[72]; (b) 卤化物钙钛矿太阳能电池的光学吸收原理图[12]; (c) α-CsSnI3, α-CsSnBr3, and α-CsSnCl3的QSGW带结构和部分态密度[75]; (d) BZA2SnI4电子带结构的DFT计算; (e) BZA2SnI4总态密度和部分态密度的DFT计算[76]
Fig. 4. (a) Schematic summarizing the origin of the band gap bowing in MA(Pb1–xSnx)I3, shaded regions represent the valence and conduction bands[72]; (b) schematic optical absorption of halide perovskite solar cell absorber[12]; (c) QSGW band structures and partial densities of states of α-CsSnI3, α-CsSnBr3, and α-CsSnCl3[75]; (d) DFT calculations of electronic band structures for BZA2SnI4; (e) DFT calculations of total and partial density of states (PDOS) for BZA2SnI4[76].
图 5 (a) 纯卤素和混合卤素的CsSnX3薄膜的归一化吸收光谱和稳态荧光光谱[65]; (b) 不同阳离子(CH3NH3+和Pb2+) ABI3的光致发光光谱[78]; (c) (PEA)2SnX4的钙钛矿薄膜的归一化吸收(实线)和荧光(虚线)光谱[41]
Fig. 5. (a) Normalized absorption spectra and steady-state PL spectra of CsSnX3 films containing pure and mixed halides[65]; (b) photoluminescence spectra for ABI3 with different cations (CH3NH3+ and Pb2+)[78]; (c) normalized absorbance (solid lines) and PL (dashed lines) spectra of (PEA)2SnX4 perovskite thin films processed on glass[41].
图 6 (a) CsSnI3电导率随温度变化关系图[79]; (b) 由HI溶液(黑色)生长的和由EtOH溶液(红色)生长的单晶MASnI3的电阻率与温度的关系[80]
Fig. 6. (a) Temperature dependence of the electrical conductivity of CsSnI3[79]; (b) temperature dependence of the electrical resistivity of single-crystal MASnI3 grown from the HI solution(black)and that grown from the EtOH solution (red)[80].
图 7 (a) MASnI3和(b) FASnI3的电阻率在不同RH时随时间的变化关系[82]; 由溶液法获得的 (c) MASnI3和(d) FASnI3的单晶电阻率在5−330 K范围内随温度变化曲线[36]
Fig. 7. Resistivity of (a) MASnI3 and (b) FASnI3 as a function of the aging time in air at 60% and 10% RH, respectively[82]; single-crystal temperature-dependent resistivity plots of (c) MASnI3 and (d) FASnI3 in the 5−330 K temperature range. The specimens were obtained from the solution method[36].
图 8 (a) (RNH2)2SnBr4的光致发光光谱(在316 nm光下激发)[6]; (b) 由有机配体包围的0D Sn混合卤素钙钛矿(C4N2H14Br)4SnBrxI6–x(x = 3)的单晶结构[86]; (c) 室温下(C4N2H14Br)4SnBrxI6–x钙钛矿晶体的激发(蓝线)和发射(红线)光谱[86]; (d) 由积分球收集的(C4N2H14Br)4SnBrxI6–x (x = 3)晶体的参照和发射光谱[86]
Fig. 8. (a) Photoluminescence spectra of (RNH2)2SnBr4 (excited by 316 nm)[6]; (b) single-crystal structure of the 0D Sn mixed-halide perovskite (C4N2H14Br)4SnBrxI6–x (x = 3) surrounded by organic ligands[86]; (c) excitation (blue line) and emission (red line) spectra of bulk Sn mixed-halide perovskite crystals at room temperature[86]; (d) excitation line of reference and emission spectrum of (C4N2H14Br)4SnBrxI6–x (x = 3) crystals collected by an integrating sphere[86].
图 9 (a) Cs2SnI6的晶体结构[22]; (b) A2SnI6的粉末X射线衍射图样和Rietveld细化; (c) Cs2SnI6, (CH3NH3)2SnI6和(CH(NH2)2)2SnI6的分离单元结构[90]
Fig. 9. (a) Crystal structure of Cs2SnI6[22]; (b) laboratory powder X-ray diffraction patterns and Rietveld refinements showing phase purity of the A2SnI6 series; (c) structures of Cs2SnI6, (CH3NH3)2SnI6, and (CH(NH2)2)2SnI6 showing the isolated octahedral units[90].
图 10 (a) 通过GGA功能计算的Cs2SnI6化合物的能带结构和(b) PDOS[81]; 使HSE06+SOC计算的Rb2SnI6的(c) P4/mnc和(d) P21/n相的能带结构[91]
Fig. 10. (a) Calculated band structure and (b) PDOS of the Cs2SnI6 compound via the GGA functional[81]; band structures calculated using HSE06+SOC for the (c) P4/mnc and (d) P21/n phases of Rb2SnI6[91].
图 11 (a) A2SnI6系列每个成员的电阻率作为温度的函数[90]; (b) 使用4探针配置收集的Rb2SnI6(IV)的温度依赖性电阻率数据[91]; (c) A2SnI6空位有序双钙钛矿的实验和计算得出的Hellwarth(μeH)电子迁移率与钙钛矿容差因子的函数关系图[91]
Fig. 11. (a) Electrical resistivity as a function of temperature for each member of the A2SnI6 series[90]; (b) temperature-dependent resistivity data of rubidium tin(IV) iodide collected using a 4-probe configuration with Pt wires and Ag paste[91]; (c) experimentally and computationally derived Hellwarth (μeH) electron mobilities of the A2SnI6 vacancy-ordered double perovskites plotted as a function of perovskite tolerance factor[91].
图 13 (a) (PEA)2SnX4钙钛矿的总体晶体示意图[41]; (b) (PEA)2SnX4钙钛矿体系的归一化吸光度(实线)和PL(虚线)光谱[41]; (c) 基于PEA2SnI4和TEA2SnI4的PeLED器件的电流密度与电压关系(J-V)曲线和亮度电压(L-V)特性[59]
Fig. 13. (a) General crystal schematic of a (PEA)2SnX4 perovskite[41]; (b) normalized absorbance (solid lines) and PL (dashed lines) spectra of (PEA)2SnX4[41]; (c) current density versus voltage (J–V) and luminance versus voltage (L–V) characteristics for the PeLED devices based on PEA2SnI4 and TEA2SnI4[59].
图 14 (a) HPA将Sn4+还原为Sn2+的机制; (b) 在不同电压下工作的器件的EL光谱; (c) 没有HPA添加剂的高分辨率Sn 3 d内层电子的XPS能谱; (d) 有HPA添加剂的高分辨率Sn 3 d内层电子的XPS能谱; (e) EQE与电流密度的关系[95]
Fig. 14. (a) Mechanism of HPA reduction of Sn4+ to Sn2+; (b) EL spectra of the device operating under different voltages; high-resolution Sn 3 d core level XPS spectra (c) without or (d) with HPA additive; (e) EQE versus current density[95].
表 1 部分锡基和铅基PeLEDs的总结
Table 1. Summaries of Sn-based PeLEDs and Pb-based PeLEDs.
年份 器件结构 优化方式 电致发光
峰/nm半峰
宽/nm最大亮度/
辐射率EQE/% 参考
文献2018 ITO/ZnO/PEI/(C18H35NH3)2SnBr4/TCTA/MnO3/Al 低维 621 162 350 cd/m2 0.1 [40] 2019 ITO/PVK/(PEA)3.5Cs5Sn4.5I17.5/TmPyPB/LiF/Al 低维 920 — 40 W/(sr·m2) 3.01 [42] 2020 ITO/PEDOT:PSS/TEA2SnI4/TPBi/LiF/Al 低维 638 28 322 cd/m2 0.62 [59] 2016 ITO/PEDOT:PSS/CsSnI3/PBD/LiF/Al — 950 — 40 W/(sr·m2) 3.8 [58] 2018 ITO/LiF/CsSnBr3/LiF/ZnS/Al 封装层 672 — 172 cd/m2 0.34 [65] 2020 ITO/PEDOT:PSS/(PEA)2SnI4/TPBi/LiF/Al 还原剂 633 24 70 cd/m2 0.3 [88] 2020 ITO/PEDOT:PSS/(PEA)2SnI4/TPBi/LiF/Al 还原剂 632 — 132 cd/m2 0.72 [110] 2020 ITO/PEDOT:PSS/(PEA)2SnI4/TPBi/LiF/Al 还原剂 630 — 355 cd/m2 0.52 [39] 2018 ITO/PEDOT:PSS/CsPbBr3/PMMA/B3 PYMPM/LiF/Al — 525 20 14000 cd/m2 20.3 [2] 2018 ITO/ZnO-PEIE/FAPbI3/TFB/MoOx/Au — 800 — 390 W/(sr·m2) 20.7 [3] 2019 ITO/ZnO-PEIE/FAPbI3/TFB/MoOx/Au — 800 — 308 W/(sr·m2) 21.6 [5] 2019 ITO/poly-TPD/FA0.33Cs0.67Pb(I0.7Br0.3)3/TPBi/LiF/Al — 694 37 — 20.9 [37] -
[1] Zhao X, Ng J D A, Friend R H, Tan Z K 2018 ACS Photonics 5 3866
Google Scholar
[2] Lin K B, Xing J, Quan L N, de Arquer F P G, Gong X W, Lu J X, Xie L Q, Zhao W, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H, Wei Z H 2018 Nature 562 245
Google Scholar
[3] Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J P, Huang W 2018 Nature 562 249
Google Scholar
[4] Shen Y, Cheng L P, Li Y Q, Li W, Chen J D, Lee S T, Tang J X 2019 Adv. Mater. 31 1901517
Google Scholar
[5] Xu W D, Hu Q, Bai S, Bao C X, Miao Y F, Yuan Z C, Borzda T, Barker A J, Tyukalova E, Hu Z J, Kawecki M, Wang H Y, Yan Z B, Liu X J, Shi X B, Uvdal K, Fahlman M, Zhang W J, Duchamp M, Liu J M, Petrozza A, Wang J P, Liu L M, Huang W, Gao F 2019 Nat. Photonics 13 418
[6] Hou L, Zhu Y H, Zhu J R, Li C Z 2019 J. Phys. Chem. C 123 31279
Google Scholar
[7] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687
Google Scholar
[8] Cho H C, Wolf C, Kim J S, Yun H J, Bae J S, Kim H, Heo J M, Ahn S, Lee T W 2017 Adv. Mater. 29 1700579
Google Scholar
[9] Lu M, Zhang Y, Wang S X, Guo J, Yu W W, Rogach A L 2019 Adv. Funct. Mater. 29 1902008
Google Scholar
[10] Xiao Z, Yan Y F 2017 Adv. Energy Mater. 7 1701136
Google Scholar
[11] Gratzel M 2014 Nat. Mater. 13 838
Google Scholar
[12] Yin W J, Yang J H, Kang J, Yan Y F, Wei S H 2015 J. Mater. Chem. A. 3 8926
Google Scholar
[13] Zhao Y, Li C L, Jiang J Z, Wang B, Shen L 2020 Small 16 2001534
Google Scholar
[14] Li C L, Lu J R, Zhao Y, Sun L Y, Wang G X, Ma Y, Zhang S M, Zhou J R, Shen L, Huang W 2019 Small 15 1903599
Google Scholar
[15] Zhao Y, Li C L, Shen L 2019 Info. Mat. 1 164
Google Scholar
[16] Li C L, Wang H L, Wang F, Li T F, Xu M J, Wang H, Wang Z, Zhan X W, Hu W D, Shen L 2020 Light Sci. Appl. 9 31
Google Scholar
[17] Shen Y, Liu Y C, Ye H C, Zheng Y T, Wei Q, Xia Y D, Chen Y H, Zhao K, Huang W, Liu S F 2020 Angew. Chem. Int. Ed. 59 14896
Google Scholar
[18] Pan W, Yang B, Niu G, Xue K H, Du X, Yin L, Zhang M, Wu H, Miao X S, Tang J 2019 Adv. Mater. 31 1904405
Google Scholar
[19] Luo T, Zhang Y, Xu Z, Niu T, Wen J, Lu J, Jin S, Liu S F, Zhao K 2019 Adv. Mater. 31 1903848
Google Scholar
[20] Sani F, Shafie S, Lim H N, Musa A O 2018 Materials 11 1008
Google Scholar
[21] Wu C C, Zhang Q H, Liu G H, Zhang Z H, Wang D, Qu B, Chen Z J, Xiao L X 2020 Adv. Energy Mater. 10 1902496
Google Scholar
[22] Luo J J, Hu M C, Niu G D, Tang J 2019 ACS Appl. Mater. Interfaces 11 31575
Google Scholar
[23] Igbari F, Wang Z K, Liao L S 2019 Adv. Energy Mater. 9 1803150
Google Scholar
[24] Ghosh S, Pradhan B 2019 Chem. Nano. Mat. 5 300
Google Scholar
[25] Mao L L, Stoumpos C C, Kanatzidis M G 2019 J. Am. Chem. Soc. 141 1171
Google Scholar
[26] Cheng L, Jiang T, Cao Y, Yi C, Wang N N, Huang W, Wang J P 2019 Adv. Mater. 32 1904163
Google Scholar
[27] Grancini G, Nazeeruddin M K 2019 Nat. Reviews Mater. 4 4
Google Scholar
[28] Babayigit A, Ethirajan A, Muller M, Conings B 2016 Nat. Mater. 15 247
Google Scholar
[29] Fan Q Q, Biesold-McGee G V, Ma J Z, Xu Q N, Pan S, Peng J, Lin Z Q 2020 Angew. Chem. Int. Ed. 59 1030
Google Scholar
[30] Sun J, Yang J, Lee J I, Cho J H, Kang M S 2018 J. Phys. Chem. Lett. 9 1573
Google Scholar
[31] Ke W J, Kanatzidis M G 2019 Nat. Commun. 10 965
Google Scholar
[32] Ke W J, Stoumpos C C, Kanatzidis M G 2019 Adv. Mater. 31 1803230
Google Scholar
[33] Meng X Y, Lin J B, Liu X, He X, Wang Y, Noda T, Wu T H, Yang X D, Han L Y 2019 Adv. Mater. 31 1903721
Google Scholar
[34] Liao Y Q, Liu H F, Zhou W J, Yang D W, Shang Y Q, Shi Z F, Li B H, Jiang X Y, Zhang L J, Quan L N, Quintero-Bermudez R, Sutherland B R, Mi Q X, Sargent E H, Ning Z J 2017 J. Am. Chem. Soc. 139 6693
Google Scholar
[35] Hoefler S F, Trimmel G, Rath T 2017 Monatsh Chem. 148 795
Google Scholar
[36] Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019
Google Scholar
[37] Fang Z B, Chen W J, Shi Y L, Zhao J, Chu S L, Zhang J, Xiao Z G 2020 Adv. Funct. Mater. 30 1909754
Google Scholar
[38] Fu P F, Huang M L, Shang Y Q, Yu N, Zhou H L, Zhang Y B, Chen S Y, Gong J K, Ning Z J 2018 ACS Appl. Mater. Interfaces 10 34363
Google Scholar
[39] Liao Y, Shang Y Q, Wei Q, Wang H, Ning Z J 2020 J. Phys. D: Appl. Phys. 53 414005
Google Scholar
[40] Zhang X T, Wang C C, Zhang Y, Zhang X Y, Wang S X, Lu M, Cui H N, Kershaw S V, Yu W W, Rogach A L 2018 ACS Energy Lett. 4 242
Google Scholar
[41] Lanzetta L, Marin-Beloqui J M, Sanchez-Molina I, Ding D, Haque S A 2017 ACS Energy Lett. 2 1662
Google Scholar
[42] Wang Y, Zou R M, Chang J, Fu Z W, Cao Y, Zhang L D, Wei Y Q, Kong D C, Zou W, Wen K C, Fan N, Wang N N, Huang W, Wang J P 2019 J. Phys. Chem. Lett. 10 453
Google Scholar
[43] El Ajjouri Y, Locardi F, Gélvez-Rueda M C, Prato M, Sessolo M, Ferretti M, Grozema F C, Palazon F, Bolink H J 2019 Energy Technol. 8 1900788
Google Scholar
[44] Li J H, Tan Z F, Hu M C, Chen C, Luo J J, Li S R, Gao L, Xiao Z W, Niu G D, Tang J 2019 Front. Optoelectron. 12 352
Google Scholar
[45] Lin T W, Su C, Lin C C 2019 J. Inf. Disp. 20 209
Google Scholar
[46] Tan Z F, Li J H, Zhang C, Li Z, Hu Q S, Xiao Z W, Kamiya T, Hosono H, Niu G D, Lifshitz E, Cheng Y B, Tang J 2018 Adv. Funct. Mater. 28 1801131
Google Scholar
[47] Han P G, Mao X, Yang S Q, Zhang F, Yang B, Wei D H, Deng W Q, Han K 2019 Angew. Chem. Int. Ed. 58 17231
Google Scholar
[48] Luo J J, Wang X M, Li S R, Liu J, Guo Y M, Niu G D, Yao L, Fu Y H, Gao L, Dong Q S, Zhao C Y, Leng M Y, Ma F Y, Liang W X, Wang L D, Jin S Y, Han J B, Zhang L J, Etheridge J, Wang J B, Yan Y F, Sargent E H, Tang J 2018 Nature 563 541
Google Scholar
[49] Hao F, Stoumpos C C, Guo P J, Zhou N J, Marks T J, Chang R P, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 11445
Google Scholar
[50] Liu J W, Ozaki M, Yakumaru S, Handa T, Nishikubo R, Kanemitsu Y, Saeki A, Murata Y, Murdey R, Wakamiya A 2018 Angew. Chem. Int. Ed. 57 13221
Google Scholar
[51] Zhu H L, Xiao J Y, Mao J, Zhang H, Zhao Y, Choy W C H 2017 Adv. Funct. Mater. 27 1605469
Google Scholar
[52] Moghe D, Wang L L, Traverse C J, Redoute A, Sponseller M, Brown P R, Bulović V, Lunt R R 2016 Nano Energy 28 469
Google Scholar
[53] Jung M C, Raga S R, Qi Y B 2016 RSC Adv. 6 2819
Google Scholar
[54] Funabiki F, Toda Y, Hosono H 2018 J. Phy. Chem. C 122 10749
Google Scholar
[55] Xi J, Wu Z X, Jiao B, Dong H, Ran C X, Piao C C, Lei T, Song T B, Ke W J, Yokoyama T, Hou X, Kanatzidis M G 2017 Adv. Mater. 29 1606964
Google Scholar
[56] Yokoyama T, Cao D H, Stoumpos C C, Song T B, Sato Y, Aramaki S, Kanatzidis M G 2016 J. Phys. Chem. Lett. 7 776
Google Scholar
[57] Lee B, Shin B, Park B 2019 Electron. Mater. Lett. 15 192
Google Scholar
[58] Hong W L, Huang Y C, Chang C Y, Zhang Z C, Tsai H R, Chang N Y, Chao Y C 2016 Adv. Mater. 28 8029
Google Scholar
[59] Wang Z B, Wang F Z, Zhao B, Qu S N, Hayat T, Alsaedi A, Sui L Z, Yuan K J, Zhang J Q, Wei Z X, Tan Z A 2020 J. Phys. Chem. Lett. 11 1120
Google Scholar
[60] Jellicoe T C, Richter J M, Glass H F, Tabachnyk M, Brady R, Dutton S E, Rao A, Friend R H, Credgington D, Greenham N C, Bohm M L 2016 J. Am. Chem. Soc. 138 2941
Google Scholar
[61] Wang H C, Wang W G, Tang A C, Tsai H Y, Bao Z, Ihara T, Yarita N, Tahara H, Kanemitsu Y, Chen S M, Liu R S 2017 Angew. Chem. Int. Ed. 56 13650
Google Scholar
[62] Zhou C K, Tian Y, Wang M C, Rose A, Besara T, Doyle N K, Yuan Z, Wang J C, Clark R, Hu Y Y, Siegrist T, Lin S C, Ma B 2017 Angew. Chem. Int. Ed. 56 9018
Google Scholar
[63] Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G 2012 J. Am. Chem. Soc. 134 8579
Google Scholar
[64] Benin B M, Dirin D N, Morad V, Wörle M, Yakunin S, Rainò G, Nazarenko O, Fischer M, Infante I, Kovalenko M V 2018 Angew. Chem. Int. Ed. 57 11329
Google Scholar
[65] Yuan F, Xi J, Dong H, Xi K, Zhang W W, Ran C X, Jiao B, Hou X, Jen A K Y, Wu Z X 2018 Phys. Status Solidi RRL 12 1800090
Google Scholar
[66] Zhou J, Luo J J, Rong X M, Wei P J, Molokeev M S, Huang Y, Zhao J, Liu Q L, Zhang X W, Tang J, Xia Z G 2019 Adv. Opt. Mater. 7 1900139
Google Scholar
[67] Li C, Lu X G, Ding W Z, Feng L M, Gao Y H, Guo Z M 2008 Acta Cryst. B 64 702
Google Scholar
[68] Yin H, Xian Y M, Zhang Y L, Li W Z, Fan J D 2019 Sol. RRL 3 1900148
Google Scholar
[69] Scaife D E, Weller P F, Fisher W G 1974 J. Solid State Chem. 9 308
Google Scholar
[70] Lai M L, Tay T Y, Sadhanala A, Dutton S E, Li G, Friend R H, Tan Z K 2016 J. Phys. Chem. Lett. 7 2653
Google Scholar
[71] Bernal C, Yang K S 2014 J.Phy. Chem. C 118 24383
Google Scholar
[72] Goyal A, McKechnie S, Pashov D, Tumas W, van Schilfgaarde M, Stevanović V 2018 Chem. Mater. 30 3920
Google Scholar
[73] Liu D, Sa R, Wang J, Wu K C 2019 J. Clust. Sci. 31 1103
[74] Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G 2014 Nat. Photonics 8 489
Google Scholar
[75] Huang L Y, Lambrecht W R L 2013 Phys. Rev. B 88 165203
Google Scholar
[76] Pisanu A, Coduri M, Morana M, Ciftci Y O, Rizzo A, Listorti A, Gaboardi M, Bindi L, Queloz V I E, Milanese C, Grancini G, Malavasi L 2020 J. Mater. Chem. A 8 1875
Google Scholar
[77] Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635
Google Scholar
[78] Peedikakkandy L, Bhargava P 2016 RSC Adv. 6 19857
Google Scholar
[79] Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G 2012 JACS 134 8579
[80] Takahashi Y, Obara R, Lin Z Z, Takahashi Y, Naito T, Inabe T, Ishibashi S, Terakura K 2011 Dalton Trans. 40 5563
Google Scholar
[81] Lee B, Stoumpos C C, Zhou N, Hao F, Malliakas C, Yeh C Y, Marks T J, Kanatzidis M G, Chang R P 2014 J. Am. Chem. Soc. 136 15379
Google Scholar
[82] Wang F, Ma J L, Xie F Y, Li L K, Chen J, Fan J, Zhao N 2016 Adv. Funct. Mater. 26 3417
Google Scholar
[83] Qian L, Sun Y L, Wu M M, Li C, Xie D, Ding L M, Shi G Q 2018 Nanoscale 10 6837
Google Scholar
[84] Lin J T, Liao C C, Hsu C S, Chen D G, Chen H M, Tsai M K, Chou P T, Chiu C W 2019 J. Am. Chem. Soc. 141 10324
Google Scholar
[85] Martinez-Sarti L, Jo S H, Kim Y H, Sessolo M, Palazon F, Lee T W, Bolink H J 2019 Nanoscale 11 12793
Google Scholar
[86] Zhou C K, Tian Y, Yuan Z, Lin H, Chen B, Clark R, Dilbeck T, Zhou Y, Hurley J, Neu J, Besara T, Siegrist T, Djurovich P, Ma B 2017 ACS Appl. Mater. Interfaces 9 44579
Google Scholar
[87] Zhou C K, Lin H R, Tian Y, Yuan Z, Clark R, Chen B H, van de Burgt L J, Wang J C, Zhou Y, Hanson K, Meisner Q J, Neu J, Besara T, Siegrist T, Lambers E, Djurovich P, Ma B 2018 Chem. Sci. 9 586
Google Scholar
[88] Maughan A E, Ganose A M, Bordelon M M, Miller E M, Scanlon D O, Neilson J R 2016 J. Am. Chem. Soc. 138 8453
Google Scholar
[89] Zimmermann I, Aghazada S, Nazeeruddin M K 2019 Angew. Chem. Int. Ed. 58 1072
Google Scholar
[90] Maughan A E, Ganose A M, Candia A M, Granger J T, Scanlon D O, Neilson J R 2018 Chem. Mater. 30 472
Google Scholar
[91] Maughan A E, Ganose A M, Almaker M A, Scanlon D O, Neilson J R 2018 Chem. Mater. 30 3909
Google Scholar
[92] Zhang X L, Cao W Y, Wang W G, Xu B, Liu S, Dai H T, Chen S M, Wang K, Sun X W 2016 Nano Energy 30 511
Google Scholar
[93] Gonzalez-Carrero S, Espallargas G M, Galian R E, Pérez-Prieto J 2015 J. Mater. Chem. A 3 14039
Google Scholar
[94] Wang X M, Meng W W, Liao W Q, Wang J B, Xiong R G, Yan Y F 2019 J. Phys. Chem. Lett. 10 501
Google Scholar
[95] Liang H Y, Yuan F L, Johnston A, Gao C C, Choubisa H, Gao Y, Wang Y K, Sagar L K, Sun B, Li P C, Bappi G, Chen B, Li J, Wang Y K, Dong Y T, Ma D X, Gao Y N, Liu Y C, Yuan M J, Saidaminov M I, Hoogland S, Lu Z H, Sargent E H 2020 Adv. Sci. 7 1903213
Google Scholar
[96] Kontos A G, Kaltzoglou A, Siranidi E, Palles D, Angeli G K, Arfanis M K, Psycharis V, Raptis Y S, Kamitsos E I, Trikalitis P N, Stoumpos C C, Kanatzidis M G, Falaras P 2017 Inorg. Chem. 56 84
Google Scholar
[97] Yang W F, Igbari F, Lou Y H, Wang Z K, Liao L S 2020 Adv. Energy Mater. 10 1902584
Google Scholar
[98] Xiao M, Gu S, Zhu P C, Tang M Y, Zhu W D, Lin R X, Chen C L, Xu W C, Yu T, Zhu J 2018 Adv. Opt. Mater. 6 1700615
Google Scholar
[99] Wong A B, Bekenstein Y, Kang J, Kley C S, Kim D, Gibson N A, Zhang D, Yu Y, Leone S R, Wang L W, Alivisatos A P, Yang P D 2018 Nano Lett. 18 2060
Google Scholar
[100] Zhu R, Luo Z, Chen H, Dong Y, Wu S T 2015 Opt. Express 23 23680
Google Scholar
[101] Hassan Y, Ashton O J, Park J H, Li G, Sakai N, Wenger B, Haghighirad A A, Noel N K, Song M H, Lee B R, Friend R H, Snaith H J 2019 J. Am. Chem. Soc. 141 1269
Google Scholar
[102] Yang J N, Song Y, Yao J S, Wang K H, Wang J J, Zhu B S, Yao M M, Rahman S U, Lan Y F, Fan F J, Yao H B 2020 J. Am. Chem. Soc. 142 2956
Google Scholar
[103] Tsai H, Nie W Y, Blancon J C, Stoumpos C C, Soe C M M, Yoo J, Crochet J, Tretiak S, Even J, Sadhanala A, Azzellino G, Brenes R, Ajayan P M, Bulovic V, Stranks S D, Friend R H, Kanatzidis M G, Mohite A D 2018 Adv. Mater. 30 1704217
Google Scholar
[104] Wang J, Shen H Z, Li W C, Wang S, Li J Z, Li D H 2019 Adv. Sci. 6 1802019
Google Scholar
[105] Lin H, Zhou C K, Tian Y, Siegrist T, Ma B W 2018 ACS Energy Lett. 3 54
Google Scholar
[106] Chen S, Shi G 2017 Adv. Mater. 29 1605448
Google Scholar
[107] Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N 2014 Adv. Mater. 26 7122
Google Scholar
[108] Song T B, Yokoyama T, Aramaki S, Kanatzidis M G 2017 ACS Energy Lett. 2 897
Google Scholar
[109] Li W Z, Li J W, Li J L, Fan J D, Mai Y H, Wang L D 2016 J. Mater. Chem. A 4 17104
Google Scholar
[110] Gao C, Jiang Y, Sun C, Han J, He T, Huang Y, Yao K, Han M, Wang X, Wang Y, Gao Y, Liu Y, Yuan M, Liang H 2020 ACS Photonics 7 1915
Google Scholar
[111] Hoshi H, Shigeeda N, Dai T 2016 Mater. Lett. 183 391
Google Scholar
[112] Ricciarelli D, Meggiolaro D, Ambrosio F, De Angelis F 2020 ACS Energy Lett. 5 2787
Google Scholar
[113] Meng X Y, Lin J B, Liu X, He X, Wang Y, Noda T, Wu T H, Yang X D, Han L Y 2019 Advanced Materials 31 1903721
计量
- 文章访问数: 14251
- PDF下载量: 468
- 被引次数: 0