搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于缺陷态钝化的高效稳定蓝光钙钛矿发光二极管

吴海妍 唐建新 李艳青

引用本文:
Citation:

基于缺陷态钝化的高效稳定蓝光钙钛矿发光二极管

吴海妍, 唐建新, 李艳青

Efficient and stable blue perovskite light emitting diodes based on defect passivation

Wu Hai-Yan, Tang Jian-Xin, Li Yan-Qing
PDF
HTML
导出引用
  • 钙钛矿材料由于具备带隙易调、光致发光量子产率高、色纯度高、载流子迁移率高、可低温溶液加工、电荷传输性能优良等优点, 在照明显示领域大放异彩. 近年来, 通过控制化学计量比、尺寸工程和钝化缺陷等多种策略对钙钛矿微观结构进行调控, 极大地提高了钙钛矿发光二极管(perovskite light emitting diodes, PeLEDs)的性能. 目前,除蓝光外, 绿光、红光、近红外PeLEDs的外量子效率(EQE)均已超过20%. 造成蓝光器件性能停滞不前的主要原因是蓝光钙钛矿薄膜较差的覆盖率以及光谱不稳定. 为提高钙钛矿薄膜质量及器件性能, 本文在准二维钙钛矿材料PEAxCsPbBr3–yCly的基础上, 通过引入双添加剂聚乙二醇(PEG)和溴化钾(KBr), 钝化薄膜表面缺陷态, 减小晶粒尺寸, 抑制离子迁移与非辐射复合损耗, 进而提升蓝光钙钛矿器件的效率及光谱稳定性. 最终在488 nm处获得最大亮度为1049 cd·m–2, 电流效率为5.68 cd·A–1, 外量子效率为4.6%的蓝光PeLEDs. 相比于不含添加剂的器件, 效率提升了近3倍, 且具有良好的光谱稳定性和工作寿命.
    Solution-processable metal halide perovskites materials have many advantages, such as adjustable band gap, high photoluminescence quantum yield (PLQY), high color purity, high carrier mobility, low temperature solution process, excellent charge transport property and so on. These make them potential application in the display field. In the past few years, the device performance of perovskite light emitting devices (PeLEDs) have been greatly improved by manipulating the perovskite microstructures through various strategies, such as stoichiometry control, dimensional engineering, defect passivation and so on. At present, except for blue PeLEDs, the external quantum efficiencies (EQEs) over 20% have been achieved for green, red, and near-infrared PeLEDs. The low efficiency of blue PeLEDs is retarding their potential applications in full-color display and solid-state lighting. The main reasons in blue PeLEDs are the poor film coverage of blue perovskite materials and the spectral instability during device operation. In order to improve the quality of perovskite film and device performance, the quasi two-dimensional perovskite materials phenylethylammonium cesium lead bromide chloride (PEAxCsPbBr3–yCly) are used as the main perovskite emission material, by partially replacing Br with Cl to enlarge their bandgap to achieve the blue emission. The Lewis base polyethyleneglycol (PEG) is introduced to passivate the surface trapping defects and improve perovskite film coverage. The potassium bromide (KBr) is introduced to reduce perovskite grain size, suppress mobile ion migration and exhibit excellent spectral stability. Dual additives PEG and KBr are incorporated into the quasi-2D blue perovskite for inhibiting the nonradiative losses by passivating the traps in the perovskite films. Eventually, the PEAxCsPbBr3–yCly + PEG + KBr based blue PeLEDs with the emission peak of 488 nm are accompanied, which maximum brightness, current efficiency, and external quantum efficiency reached 1049 cd·m–2, of 5.68 cd·A–1, and of 4.6%, respectively, with high color purity (the Commission Internationale de L'Eclairage (CIE) chromaticity coordinates is (0.0747, 0.2570)) and the narrow full width at half maximum (FWHM) of 20 nm. Compare to the devices without additives, the efficiency has increased by nearly 3 times. Furthermore, the devices also show better spectral stability and operation lifetime. This work provides an effective method of blue PeLEDs toward the practical applications.
      通信作者: 李艳青, yqli@phy.ecnu.edu.cn
      Corresponding author: Li Yan-Qing, yqli@phy.ecnu.edu.cn
    [1]

    Zhang X, Liu H, Wang W, Zhang J, Xu B, Karen K L, Zheng Y, Liu S, Chen S, Wang K, Sun X W 2017 Adv. Mater. 29 1606405Google Scholar

    [2]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [3]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [4]

    Liu D, Kelly T L 2014 Nat. Photonics 8 133Google Scholar

    [5]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J 2015 Science 347 967Google Scholar

    [6]

    Brenner P, Stulz M, Kapp D, Abzieher T, Paetzold U W, Quintilla A, Howard I A, Kalt H, Lemmer U 2016 Appl. Phys. Lett. 109 141106Google Scholar

    [7]

    Wang Y C, Li H, Hong Y H, Hong K B, Chen F C, Hsu C H, Lee R K, Conti C, Kao T S, Lu T C 2019 ACS Nano 13 5421Google Scholar

    [8]

    Xiao Z G, Kerner R A, Zhao L F, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photonics 11 108Google Scholar

    [9]

    Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W 2016 Nat. Photonics 10 699Google Scholar

    [10]

    Lin K, Xing J, Quan L N, de Arquer F P G, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H, Wei Z H 2018 Nature 562 245Google Scholar

    [11]

    Turkevych I, Kazaoui S, Belich N A, Grishko A Y, Fateev S A, Petrov A A, Urano T, Aramaki S, Kosar S, Kondo M, Goodilin E A, Graetzel M, Tarasov A B 2019 Nat. Nanotechnol. 14 57Google Scholar

    [12]

    Tavakoli M M, Yadav P, Prochowicz D, Sponspeller M, Osheov A, Bulovic V, Kong J 2019 Adv. Energy Mater. 9 1803587Google Scholar

    [13]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [14]

    Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar

    [15]

    Yantara N, Bhaumik S, Yan F, Sabba D, Dewi H A, Mathews N, Boix P P, Demir H V, Mhaisalkar S 2015 J. Phys. Chem. Lett. 6 4360Google Scholar

    [16]

    Cheng L P, Huang J S, Shen Y, Li G P, Liu X K, Li W, Wang Y H, Li Y Q, Jiang Y, Gao F, Lee C S, Tang J X 2019 Adv. Opt. Mater. 7 1801534Google Scholar

    [17]

    Fang Z, Chen W, Shi Y, Zhao J, Chu S, Zhang J, Xiao Z 2020 Adv. Funct. Mater. 30 1909754Google Scholar

    [18]

    Li Z, Chen Z, Yang Y, Xue Q, Yip H L, Cao Y 2019 Nat. Commun. 10 1027Google Scholar

    [19]

    Wang K H, Peng Y, Ge J, Jiang S, Zhu B S, Yao J, Yin Y C, Yang J N, Zhang Q, Yao H B 2018 ACS Photonics 6 667Google Scholar

    [20]

    Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249Google Scholar

    [21]

    Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z, Borzda T, Barker A J, Tyukalova E, Hu Z, Kawecki M, Wang H, Yan Z, Liu X, Shi X, Uvdal K, Fahlman M, Zhang W, Duchamp M, Liu J M, Petrozza A, Wang J, Liu L M, Huang W, Gao F 2019 Nat. Photonics 13 418Google Scholar

    [22]

    Liu Y, Cui J, Du K, Tian H, He Z, Zhou Q, Yang Z, Deng Y, Chen D, Zuo X, Ren Y, Wang L, Zhu H, Zhao B, Di D, Wang J, Friend R H, Jin Y 2019 Nat. Photonics 13 760Google Scholar

    [23]

    Wang Q, Wang X, Yang Z, Zhou N, Deng Y, Zhao J, Xiao X, Rudd P, Moran A, Yan Y, Huang J 2019 Nat. Commun. 10 5633Google Scholar

    [24]

    Kumawat N K, Dey A, Kumar A, Gopinathan S P, Narasimhan K L, Kabra D 2015 ACS Appl. Mater. Interfaces 7 13119Google Scholar

    [25]

    Kim H P, Kim J, Kim B S, Kim H M, Kim J, Yusoff A R b M, Jang J, Nazeeruddin M K 2017 Adv. Opt. Mater. 5 1600920Google Scholar

    [26]

    Wang Q, Ren J, Peng X F, Ji X X, Yang X H 2017 ACS Appl. Mater. Interfaces 9 29901Google Scholar

    [27]

    Vashishtha P, Ng M, Shivarudraiah S B, Halpert J E 2018 Chem. Mater. 31 83Google Scholar

    [28]

    Cheng L, Cao Y, Ge R, Wei Y Q, Wang N N, Wang J P, Huang W 2017 Chin. Chem. Lett. 28 29Google Scholar

    [29]

    段聪聪, 程露, 殷垚, 朱琳 2019 68 158503Google Scholar

    Duan C C, Chen L, Yin Y, Zhu L 2019 Acta Phys. Sin. 68 158503Google Scholar

    [30]

    Jiang Y, Qin C, Cui M, He T, Liu K, Huang Y, Luo M, Zhang L, Xu H, Li S, Wei J, Liu Z, Wang H, Kim G H, Yuan M, Chen J 2019 Nat. Commun. 10 1868Google Scholar

    [31]

    Ren Z, Xiao X, Ma R, Lin H, Wang K, Sun X W, Choy W C H 2019 Adv. Funct. Mater. 29 1905339Google Scholar

    [32]

    Zheng F, Chen W, Bu T, Ghiggino K P, Huang F, Cheng Y, Tapping P, Kee T W, Jia B, Wen X 2019 Adv. Energy Mater. 9 1901016Google Scholar

    [33]

    黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛 2019 68 158505Google Scholar

    Li Z C, Chen Z M, Zou G R X, Yip H L, Cao Y 2019 Acta Phys. Sin. 68 158505Google Scholar

    [34]

    Li G, Tan Z K, Di D, Lai M L, Jiang L, Lim J H W, Friend R H, Greenham N C 2015 Nano Lett. 15 2640Google Scholar

    [35]

    Edri E, Kirmayer S, Kulbak M, Hodes G, Cahen D 2014 J. Phys. Chem. Lett. 5 429Google Scholar

    [36]

    Shi H, Du M H 2014 Phys. Rev. B 90 174103Google Scholar

    [37]

    Zou W, Li R, Zhang S, Liu Y, Wang N, Cao Y, Miao Y, Xu M, Guo Q, Di D, Zhang L, Yi C, Gao F, Friend R H, Wang J, Huang W 2018 Nat. Commun. 9 608Google Scholar

    [38]

    Yang Y, Zheng Y, Cao W, Titov A, Hyvonen J, Manders J R, Xue J, Holloway P H, Qian L 2015 Nat. Photonics 9 259Google Scholar

    [39]

    王继飞, 林东旭, 袁永波 2019 68 158501Google Scholar

    Wang J F, Lin D X, Yuan Y B 2019 Acta Phys. Sin. 68 158501Google Scholar

  • 图 1  基于PEAxCsPbBr3–yCly + PEG + KBr钙钛矿前驱体溶液的合成路线

    Fig. 1.  Synthesis of PEAxCsPbBr3–yCly + PEG + KBr based perovskite precursor solution

    图 2  含有不同添加剂的PEAxCsPbBr3-yCly钙钛矿薄膜SEM图像, 标尺为200 nm

    Fig. 2.  SEM images of PEAxCsPbBr3-yCly perovskite films with different additives, the scale bar is 200 nm

    图 3  含有不同添加剂的PEAxCsPbBr3-yCly钙钛矿晶粒尺寸分布柱状图

    Fig. 3.  Histograms of grain size distributions of PEAxCsPbBr3-yCly perovskite films with different additives.

    图 4  含有不同添加剂的PEAxCsPbBr3-yCly钙钛矿薄膜在PEDOT:PSS上的XRD图谱

    Fig. 4.  XRD patterns of various PEAxCsPbBr3-yCly perovskite films with different additives on PEDOT:PSS.

    图 5  含有不同添加剂的PEAxCsPbBr3–yCly钙钛矿薄膜的光学性能表征 (a) PL光谱; (b) PLQY; (c)TRPL曲线

    Fig. 5.  Optical characterization of PEAxCsPbBr3–yCly perovskite films with different additives: (a) PL spectroscopy; (b) PLQY; (b) TRPL decay curves.

    图 6  (a) PeLEDs的器件结构示意图; (b) PeLEDs的截面SEM图像

    Fig. 6.  (a) Device structure diagram of PeLEDs; (b) Cross-sectional SEM images of PeLEDs

    图 7  含有不同添加剂的PeLEDs电学性能表征 (a)电流密度-电压-亮度(J-V-L); (b)电流效率-电流密度-外量子效率(CE-J-EQE); (c)归一化后的EL光谱图; (d)国际照明委员会(CIE)色坐标图

    Fig. 7.  Electrical performance characteristics of PeLEDs with different additives: (a) Current density-voltage-luminance(J-V-L); (b) current efficiency-current density-external quantum efficiency(CE-J-EQE); (c) the normalized EL spectra; (d) the Commission Internationale de I’Eclairage (CIE) coordinates

    图 8  (a)含有不同添加剂的PeLEDs寿命特性图. 含有不同添加剂的PeLEDs在T0T50时对应的EL光谱 (b)标准器件; (c)有PEG; (d)有PEG与KBr

    Fig. 8.  (a) Operating lifetime characteristics of PeLEDs with different additives. The corresponding EL spectra of PeLEDs with different additives at T0 and T50: (b) Control; (c) with PEG; (d) with PEG+KBr

    图 9  PeLEDs光谱稳定性 (a)标准器件; (b)有PEG; (c)有PEG与KBr

    Fig. 9.  The spectral stability of PeLEDs: (a) Control; (b) with PEG; (c) with PEG + KBr.

    图 10  5.7 V下, PeLEDs不同工作时长的EL光谱图 (a)标准器件; (b)有PEG; (c)有PEG与KBr

    Fig. 10.  The EL spectra of PeLEDs with different working minutes at 5.7 V: (a) Control; (b) with PEG; (c) with PEG+KBr.

    表 1  含有不同添加剂钙钛矿发光层的蓝光PeLEDs性能

    Table 1.  The performance of blue PeLEDs with different additive perovskite materials.

    DevicesMax.
    L/cd·m–2
    CE/cd·A–1EQE/%EL
    peak/nm
    Control7791.621.2488
    PEG10383.693.0488
    PEG+KBr10495.684.6488
    下载: 导出CSV
    Baidu
  • [1]

    Zhang X, Liu H, Wang W, Zhang J, Xu B, Karen K L, Zheng Y, Liu S, Chen S, Wang K, Sun X W 2017 Adv. Mater. 29 1606405Google Scholar

    [2]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [3]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [4]

    Liu D, Kelly T L 2014 Nat. Photonics 8 133Google Scholar

    [5]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J 2015 Science 347 967Google Scholar

    [6]

    Brenner P, Stulz M, Kapp D, Abzieher T, Paetzold U W, Quintilla A, Howard I A, Kalt H, Lemmer U 2016 Appl. Phys. Lett. 109 141106Google Scholar

    [7]

    Wang Y C, Li H, Hong Y H, Hong K B, Chen F C, Hsu C H, Lee R K, Conti C, Kao T S, Lu T C 2019 ACS Nano 13 5421Google Scholar

    [8]

    Xiao Z G, Kerner R A, Zhao L F, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photonics 11 108Google Scholar

    [9]

    Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W 2016 Nat. Photonics 10 699Google Scholar

    [10]

    Lin K, Xing J, Quan L N, de Arquer F P G, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H, Wei Z H 2018 Nature 562 245Google Scholar

    [11]

    Turkevych I, Kazaoui S, Belich N A, Grishko A Y, Fateev S A, Petrov A A, Urano T, Aramaki S, Kosar S, Kondo M, Goodilin E A, Graetzel M, Tarasov A B 2019 Nat. Nanotechnol. 14 57Google Scholar

    [12]

    Tavakoli M M, Yadav P, Prochowicz D, Sponspeller M, Osheov A, Bulovic V, Kong J 2019 Adv. Energy Mater. 9 1803587Google Scholar

    [13]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [14]

    Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar

    [15]

    Yantara N, Bhaumik S, Yan F, Sabba D, Dewi H A, Mathews N, Boix P P, Demir H V, Mhaisalkar S 2015 J. Phys. Chem. Lett. 6 4360Google Scholar

    [16]

    Cheng L P, Huang J S, Shen Y, Li G P, Liu X K, Li W, Wang Y H, Li Y Q, Jiang Y, Gao F, Lee C S, Tang J X 2019 Adv. Opt. Mater. 7 1801534Google Scholar

    [17]

    Fang Z, Chen W, Shi Y, Zhao J, Chu S, Zhang J, Xiao Z 2020 Adv. Funct. Mater. 30 1909754Google Scholar

    [18]

    Li Z, Chen Z, Yang Y, Xue Q, Yip H L, Cao Y 2019 Nat. Commun. 10 1027Google Scholar

    [19]

    Wang K H, Peng Y, Ge J, Jiang S, Zhu B S, Yao J, Yin Y C, Yang J N, Zhang Q, Yao H B 2018 ACS Photonics 6 667Google Scholar

    [20]

    Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249Google Scholar

    [21]

    Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z, Borzda T, Barker A J, Tyukalova E, Hu Z, Kawecki M, Wang H, Yan Z, Liu X, Shi X, Uvdal K, Fahlman M, Zhang W, Duchamp M, Liu J M, Petrozza A, Wang J, Liu L M, Huang W, Gao F 2019 Nat. Photonics 13 418Google Scholar

    [22]

    Liu Y, Cui J, Du K, Tian H, He Z, Zhou Q, Yang Z, Deng Y, Chen D, Zuo X, Ren Y, Wang L, Zhu H, Zhao B, Di D, Wang J, Friend R H, Jin Y 2019 Nat. Photonics 13 760Google Scholar

    [23]

    Wang Q, Wang X, Yang Z, Zhou N, Deng Y, Zhao J, Xiao X, Rudd P, Moran A, Yan Y, Huang J 2019 Nat. Commun. 10 5633Google Scholar

    [24]

    Kumawat N K, Dey A, Kumar A, Gopinathan S P, Narasimhan K L, Kabra D 2015 ACS Appl. Mater. Interfaces 7 13119Google Scholar

    [25]

    Kim H P, Kim J, Kim B S, Kim H M, Kim J, Yusoff A R b M, Jang J, Nazeeruddin M K 2017 Adv. Opt. Mater. 5 1600920Google Scholar

    [26]

    Wang Q, Ren J, Peng X F, Ji X X, Yang X H 2017 ACS Appl. Mater. Interfaces 9 29901Google Scholar

    [27]

    Vashishtha P, Ng M, Shivarudraiah S B, Halpert J E 2018 Chem. Mater. 31 83Google Scholar

    [28]

    Cheng L, Cao Y, Ge R, Wei Y Q, Wang N N, Wang J P, Huang W 2017 Chin. Chem. Lett. 28 29Google Scholar

    [29]

    段聪聪, 程露, 殷垚, 朱琳 2019 68 158503Google Scholar

    Duan C C, Chen L, Yin Y, Zhu L 2019 Acta Phys. Sin. 68 158503Google Scholar

    [30]

    Jiang Y, Qin C, Cui M, He T, Liu K, Huang Y, Luo M, Zhang L, Xu H, Li S, Wei J, Liu Z, Wang H, Kim G H, Yuan M, Chen J 2019 Nat. Commun. 10 1868Google Scholar

    [31]

    Ren Z, Xiao X, Ma R, Lin H, Wang K, Sun X W, Choy W C H 2019 Adv. Funct. Mater. 29 1905339Google Scholar

    [32]

    Zheng F, Chen W, Bu T, Ghiggino K P, Huang F, Cheng Y, Tapping P, Kee T W, Jia B, Wen X 2019 Adv. Energy Mater. 9 1901016Google Scholar

    [33]

    黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛 2019 68 158505Google Scholar

    Li Z C, Chen Z M, Zou G R X, Yip H L, Cao Y 2019 Acta Phys. Sin. 68 158505Google Scholar

    [34]

    Li G, Tan Z K, Di D, Lai M L, Jiang L, Lim J H W, Friend R H, Greenham N C 2015 Nano Lett. 15 2640Google Scholar

    [35]

    Edri E, Kirmayer S, Kulbak M, Hodes G, Cahen D 2014 J. Phys. Chem. Lett. 5 429Google Scholar

    [36]

    Shi H, Du M H 2014 Phys. Rev. B 90 174103Google Scholar

    [37]

    Zou W, Li R, Zhang S, Liu Y, Wang N, Cao Y, Miao Y, Xu M, Guo Q, Di D, Zhang L, Yi C, Gao F, Friend R H, Wang J, Huang W 2018 Nat. Commun. 9 608Google Scholar

    [38]

    Yang Y, Zheng Y, Cao W, Titov A, Hyvonen J, Manders J R, Xue J, Holloway P H, Qian L 2015 Nat. Photonics 9 259Google Scholar

    [39]

    王继飞, 林东旭, 袁永波 2019 68 158501Google Scholar

    Wang J F, Lin D X, Yuan Y B 2019 Acta Phys. Sin. 68 158501Google Scholar

  • [1] 张俊廷, 纪克, 谢禹, 李超. 基于钙钛矿的二维铁磁体Sr2RuO4单层.  , 2024, 73(22): 226101. doi: 10.7498/aps.73.20241042
    [2] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能.  , 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [3] 余毅, 安治东, 蔡晓艺, 郭明磊, 敬承斌, 李艳青. 锡基钙钛矿的研究进展及其在发光二极管中的应用.  , 2021, 70(4): 048503. doi: 10.7498/aps.70.20201284
    [4] 李雪, 曹宝龙, 王明昊, 冯增勤, 陈淑芬. 基于改性空穴注入层与复合发光层的高效钙钛矿发光二极管.  , 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [5] 樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新. 发光铅卤钙钛矿纳米晶稳定性的研究进展.  , 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [6] 吴家龙, 窦永江, 张建凤, 王浩然, 杨绪勇. 溶液法制备的金属掺杂氧化镍空穴注入层在钙钛矿发光二极管上的应用.  , 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [7] 陈佳楣, 苏杭, 李婉, 张立来, 索鑫磊, 钦敬, 朱坤, 李国龙. 钙钛矿发光二极管光提取性能增强的研究进展.  , 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [8] 黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛. 有机添加剂在金属卤化钙钛矿发光二极管中的应用.  , 2019, 68(15): 158505. doi: 10.7498/aps.68.20190307
    [9] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池.  , 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [10] 黄伟, 李跃龙, 任慧志, 王鹏阳, 魏长春, 侯国付, 张德坤, 许盛之, 王广才, 赵颖, 袁明鉴, 张晓丹. 基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管.  , 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [11] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展.  , 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [12] 段聪聪, 程露, 殷垚, 朱琳. 蓝光钙钛矿发光二极管: 机遇与挑战.  , 2019, 68(15): 158503. doi: 10.7498/aps.68.20190745
    [13] 封波, 邓彪, 刘乐功, 李增成, 冯美鑫, 赵汉民, 孙钱. 等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响.  , 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [14] 刘战辉, 张李骊, 李庆芳, 张荣, 修向前, 谢自力, 单云. Si(110)和Si(111)衬底上制备InGaN/GaN蓝光发光二极管.  , 2014, 63(20): 207304. doi: 10.7498/aps.63.207304
    [15] 陈新莲, 孔凡敏, 李康, 高晖, 岳庆炀. 无序光子晶体提高GaN基蓝光发光二极管光提取效率的研究.  , 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [16] 岳庆炀, 孔凡敏, 李康, 赵佳. 基于缺陷光子晶体结构的GaN基发光二极管光提取效率的有关研究.  , 2012, 61(20): 208502. doi: 10.7498/aps.61.208502
    [17] 高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静. 双层光子晶体氮化镓蓝光发光二极管结构优化的研究.  , 2012, 61(12): 127807. doi: 10.7498/aps.61.127807
    [18] 汪津, 赵毅, 谢文法, 段羽, 陈平, 刘式墉. 利用DPVBi插层提高蓝色荧光有机电致发光器件的效率.  , 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.2
    [19] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究.  , 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [20] 罗 毅, 郭文平, 邵嘉平, 胡 卉, 韩彦军, 薛 松, 汪 莱, 孙长征, 郝智彪. GaN基蓝光发光二极管的波长稳定性研究.  , 2004, 53(8): 2720-2723. doi: 10.7498/aps.53.2720
计量
  • 文章访问数:  11603
  • PDF下载量:  350
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-16
  • 修回日期:  2020-05-13
  • 上网日期:  2020-05-20
  • 刊出日期:  2020-07-05

/

返回文章
返回
Baidu
map