搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙钛矿发光二极管光提取性能增强的研究进展

陈佳楣 苏杭 李婉 张立来 索鑫磊 钦敬 朱坤 李国龙

引用本文:
Citation:

钙钛矿发光二极管光提取性能增强的研究进展

陈佳楣, 苏杭, 李婉, 张立来, 索鑫磊, 钦敬, 朱坤, 李国龙

Research progress of enhancing perovskite light emitting diodes with light extraction

Chen Jia-Mei, Su Hang, Li Wan, Zhang Li-Lai, Suo Xin-Lei, Qin Jing, Zhu Kun, Li Guo-Long
PDF
HTML
导出引用
  • 钙钛矿发光二极管具有色纯度高, 发光层材料带隙可调等优点, 目前其外量子效率已经超过20%, 在平板显示和照明领域有很好的商业化前景. 然而, 同有机发光二极管类似, 钙钛矿发光二极管同样存在衬底模式、表面等离子体模式、波导模式引起的内部损耗问题, 在一定程度上限制了钙钛矿发光二极管的性能提升. 因此, 需要优化器件的材料和几何结构以获得更好的膜间光学导纳匹配, 改善钙钛矿发光二极管光提取效率以增强器件的发光性能. 当前, 通过改变电极材料、增加等离子体激元、引入微纳结构以及优化钙钛矿薄膜和器件结构, 可以增强钙钛矿发光二极管光提取效率, 通过增强光提取效率后的钙钛矿发光二极管外量子效率可达 28.2%, 电流效率可达88.7 cd/A. 本文针对钙钛矿发光二极管材料与结构的改变, 从以上四个方面进行重点阐述. 此外, 进一步分析了这四种方法在提升器件光提取效率方面存在的优点和面临的问题, 从而为钙钛矿发光二极管的制备和优化提供一定的借鉴.
    Perovskite light emitting diodes (PeLEDs) have developed rapidly in recent years due to their advantages of tenability of band gap and high color purity. At present, the external quantum efficiency of PeLED has rised up to 20%. Like the scenario of organic light emitting diode, there exist various internal losses in PeLED with low light extraction efficiency. It arises from the absorption of substrates, waveguide transmission and surface plasmon resonance of metal electrode. To improve the luminescence performance of PeLED, a well-matched optical admittance between the thin-films inside the devices is required. In this paper, the strategies of enhancing the light extraction efficiency are adopted as the materials and structures in PeLED are concerned. The applications of alternative electrode in PeLED are discussed, such as graphene, silver nanowires, metal transparent electrode and some new-types of electrodes. In addition, the plasma effect is also introduced into the PeLED to deflect the emitting light. What is more, the nano-structure grating is inserted into device to reduce the optical losses due to the large refractive index difference between the interfaces in device. Therefore, the external quantum efficiency of PeLED rises up to 28.2%, and the current efficiency can reach 88.7 cd/A.
      通信作者: 李国龙, liglo@163.com
    • 基金项目: 宁夏自然科学基金(批准号: 2019AAC03001)资助的课题
      Corresponding author: Li Guo-Long, liglo@163.com
    • Funds: Project supported by the National Natural Science Foundation of Ningxia, China (Grant No. 2019AAC03001)
    [1]

    Wang J P, Wang N N, Jin Y Z, Si J J, Tan Z K, Du H, Cheng L, Dai X L, Bai S, He H P, Ye Z Z, Lai M L, Friend R H, Huang W 2015 Adv. Mater. 27 2311Google Scholar

    [2]

    Meng F Y, Liu X Y, Chen Y X, Cai X Y, Li M K, Shi T T, Chen Z M, Chen D C, Yip H L, Ramanan C, Blom P W M, Su S J 2020 Adv. Funct. Mater. 2020 1910167Google Scholar

    [3]

    Lee S J, Park J H, Nam Y S, Lee B R, Zhao B D, Nuzzo D D, Jung E D, Jeon H, Kim J Y, Jeong H Y, Friend R H, Song M H 2018 ACS Nano 12 3417Google Scholar

    [4]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [5]

    Quan L N, Arquer F P G D, Sabatini R P, Sargent E H 2018 Adv. Mater. 30 1801996Google Scholar

    [6]

    Wei Z H, Xing J 2019 J. Phys. Chem. Lett. 10 3035Google Scholar

    [7]

    Zou Y, Yuan Z, Bai S, Gao F, Sun B 2019 Mater. Today Nano 5 100028Google Scholar

    [8]

    Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G 2016 Adv. Mater. 28 6804Google Scholar

    [9]

    Park M H, Park J, Lee J, So H S, Kim H, Jeong S H, Han T H, Wolf C, Lee H, Yoo S, Lee T W 2019 Adv. Funct. Mater. 29 1902017Google Scholar

    [10]

    Fang Z B, Chen W J, Shi Y L, Zhao J, Chu S L, Zhang J, Xiao Z G 2020 Adv. Funct. Mater. 30 1909754Google Scholar

    [11]

    Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z, Kong D C, Dai D X, Jin Y Z, Li G Q, Li H, Peng Q M, Wang J P, Huang W 2018 Nature 562 249Google Scholar

    [12]

    Shen Y, Cheng L P, Li Y Q, Li W, Chen J D, Lee S T, Tang J X 2019 Adv. Mater. 31 1901517Google Scholar

    [13]

    Lin K B, Xing J, Quan L N, Arquer F P G D, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H, Wei Z H 2018 Nature 562 245Google Scholar

    [14]

    Zhao B D, Bai S, Kim V, Lamboll R, Shivanna R, Auras F, Richter J M, Yang L, Dai L J, Alsari M, She X J, Liang L S, Zhang J B, Lilliu S, Gao P, Snaith H J, Wang J P, Greenham N C, Friend R H, Di D W 2018 Nat. Photonics 12 783Google Scholar

    [15]

    Zhao X F, Tan Z K 2019 Nat. Photonics 4851 50

    [16]

    Xu W D, Hu Q, Bai S, Bao C X, Miao Y F, Yuan Z C, Borzda T, Barker A J, Tyukalova E, Hu Z J, Kawecki M, Wang H Y, Yan Z B, Liu X J, Shi X B, Uvdal K, Fahlman M, Zhang W J, Duchamp M, Liu J M, Petrozza A, Wang J P, Liu L M, Huang W, Gao F 2019 Nat. Photonics 13 418

    [17]

    Bao C X, Xu W D, Yang J, Bai S, Teng P P, Yang Y, Wang J P, Zhao N, Zhang W J, Huang W, Gao F 2020 Nat. Electron. 3 156Google Scholar

    [18]

    方晓敏, 江孝伟, 赵建伟 2018 激光与光电子学进展 55 082302Google Scholar

    Fang X M, Jiang X W, Zhao J W 2018 Laser Optoelectronics Progress 55 082302Google Scholar

    [19]

    Hong K, Lee J L 2011 Electron. Mater. Lett. 7 77Google Scholar

    [20]

    Meng S S, Li Y Q, Tang J X 2018 Org. Electron. 61 351Google Scholar

    [21]

    李国龙, 黄卓寅, 李衎, 甄红宇, 沈伟东, 刘旭 2011 60 077207Google Scholar

    Li G L, Huang Z Y, Li K, Zhen H Y, Shen W D, Liu X 2011 Acta. Phys. Sin. 60 077207Google Scholar

    [22]

    Hsu C W, Lee Y C, Chen H L, Chou Y F 2012 Photonic. Nanostruct. 10 523Google Scholar

    [23]

    Gao C H, Zhang Y, Ma X J, Yu F X, Jia Y L, Lei Y L, Chen P, Sun W W, Xiong Z H 2018 Org. Electron. 58 88Google Scholar

    [24]

    Zhou Y, Wu G M, Gao D W, Xing G J, Zhu Y Y, Zhang Z Q, Cao Y 2012 Adv. Mat. Res. 465 268Google Scholar

    [25]

    Seo H K, Kim H, Lee J, Park M H, Jeong S H, Kim Y H, Kwon S J, Han T H, Yoo S, Lee T W 2017 Adv. Mater. 29 1605587Google Scholar

    [26]

    Lu M, Zhang X Y, Bai X, Wu H, Shen X Y, Zhang Y, Zhang W, Zheng W T, Song H W, Yu W W, Rogach A L 2018 ACS Energy Lett. 3 1571Google Scholar

    [27]

    Liu Y S, Guo S, Yi F S, Feng J, Sun H B 2018 Opt. Lett. 43 5524Google Scholar

    [28]

    Liu Y F, Ding T, Wang H R, Zhang Y T, Chen C, Chen X T, Duan Y 2020 Appl. Surf. Sci. 504 144442Google Scholar

    [29]

    Jeong S H, Woo S H, Han T H, Park M H, Cho H, Kim Y H, Cho H, Kim Y H, Cho H, Kim H, Yoo S, Lee T W 2017 Npg. Asia. Mater. 9 e411Google Scholar

    [30]

    Wu H, Zhang Y, Zhang X Y, Lu M, Sun C, Bai X, Zhang T Q, Sun G, Yu W W 2018 Adv. Electron. Mater. 4 1700285Google Scholar

    [31]

    Miao Y F, Cheng L, Zou W, Gu L H, Zhang J, Guo Q, Peng Q M, Xu M M, He Y R, Zhang S T, Cao Y, Li R Z, Wang N N, Huang W, Wang J P 2020 Light Sci. Appl. 9 89Google Scholar

    [32]

    Woo R W 1902 Proc. Phys. Soc. London 18 269Google Scholar

    [33]

    Zhang X L, Xu B, Wang W G, Liu S, Zheng Y J, Chen S M, Wang K, Sun X W 2017 ACS. Appl. Mater. Inter. 9 4926Google Scholar

    [34]

    Chen P, Xiong Z Y, Wu X Y, Shao M, Meng Y, Xiong Z H, Gao C H 2017 J. Phys. Chem. Lett. 8 3961Google Scholar

    [35]

    Zhang Y H, Sun H Q, Zhang S, Li S P, Wang X, Zhang X, Liu T Y, Guo Z Y 2019 Opt. Mater. 89 563Google Scholar

    [36]

    Mao J, Sha W E I, Zhang H, Ren X G, Zhuang J Q, Roy V A L, Wong K S, Choy W C H 2017 Adv. Funct. Mater. 27 1606525Google Scholar

    [37]

    Jeon S H, Zhao L F, Jung Y J, Kim J W, Kim S Y, Kang H, Jeong J H, Rand B P, Lee J H 2019 Small 15 1900135Google Scholar

    [38]

    Zhang Q P, Tavakoli M M, Gu L L, Zhang D Q, Tang L, Gao Y, Guo J, Lin Y J, Leung S F, Poddar S, Fu Y, Fan Z Y 2019 Nat. Commun. 10 727Google Scholar

    [39]

    Zhao L F, Lee K M, Roh K D, Khan S U Z, Rand B P 2019 Adv. Mater. 31 1805836Google Scholar

    [40]

    Lu J X, Feng W J, Mei G D, Sun J Y, Yan C Z, Zhang D, Lin K B, Wu D, Wang K, Wei Z H 2020 Adv. Sci. 7 2000689Google Scholar

  • 图 1  (a) PeLED器件中的光耦合损耗; (b)光在介质与空气界面的光学路径(垂直入射、折射、全反射)[19,20]

    Fig. 1.  (a) Various kinds of light out-coupling losses in LEDs; (b) optical path of light at the interface between medium and air (vertical incidence, refringence, total reflection)[19,20].

    图 2  基于CsPbI3纳米晶的PeLED的器件结构示意图, 基底分别为ITO和Ag, 其中红色箭头表明该端电极为透明且为出光面[26]

    Fig. 2.  Schematic diagram of the CsPbI3 nanocrystal-based LED with ITO and Ag bottom cathodes. Red arrows indicate on which side the respective devices are transparent and emit light[26].

    图 3  分别采用ITO和Au电极的PeLED (a)能级结构排列图; (b)电压-电流效率图[27]

    Fig. 3.  PeLED with ITO and ultrathin Au electrode: (a) Energy band structure; (b) current efficiency-voltage curves[27].

    图 4  PeLED电极为ZnO-Ag-ZnO结构: (a) ZnO-Ag-ZnO结构示意图: 底部为ZnO, 中间为Ag层, 顶部为ZnO层; (b)电极分别为ITO和m-ZnO-Ag-ZnO的器件电压-电流效率图(插图显示了在5 V条件下器件的辐射性)[28]

    Fig. 4.  PeLED with ZnO-Ag-ZnO electrode: (a) ZnO-Ag-ZnO structure: bottom wetting ZnO layer, middle patterned Ag layer and top continuous ZnO layer; (b) current efficiency-voltage curves with ITO and ZnO-Ag-ZnO electrode (insets show the magnified view of emission uniformity on 5 V)[28].

    图 5  阳极为AnoHIL的PeLED器件 (a)能级结构排列图; (b) PeLED 为不同电极的电压-外量子效率曲线[29]

    Fig. 5.  PeLEDs with AnoHIL anode: (a) Energy band diagram; (b) voltage-EQE curves of PeLEDs fabricated on various anodes[29].

    图 6  掺杂Ag纳米棒的PeLED的透射电子显微镜截面图及器件结构示意图[33]

    Fig. 6.  Transmission electron microscope image of cross section and schematic diagram of device structure for PeLED with Ag nanorods[33].

    图 7  FDTD模拟Au-Ag NP的电磁场分布[35]

    Fig. 7.  FDTD simulation of the electromagnetic field distributed around the Au-Ag NP[35].

    图 8  基于MAPbI3的PeLED (a)光栅在PEDOT:PSS/ITO衬底上的实像; (b)电流密度-辐射特性曲线; (c)电压-外量子效率曲线[36]

    Fig. 8.  PeLED based on MAPbI3: (a) Real image of grating on PEDOT:PSS/ITO substrate; (b) the curves of current density-radiance characteristics; (c) the curves of voltage-EQE[36].

    图 9  PeLED带有纳米孔阵列、有机传输层的分子结构以及该结构的扫描电子显微镜[37]

    Fig. 9.  Device structure of PeLEDs with NHA, the molecular structure of organic transportin layers, and scanning electron microscope images of the structure[37].

    图 10  带有AAM结构的PeLED (a)器件结构示意图; (b) PeLED带有ND, NW结构的电场强度; (c) PeLED带有ND结构的电场强度[38]

    Fig. 10.  PeLED with AAM structure: (a) Device schematic; (b) electric field intensity of PeLED with ND, NW structure; (c) electric field intensity of PeLED with ND structure[38].

    图 11  基于CsPbBr3的PeLED压印纳米结构制备过程[12]

    Fig. 11.  Fabrication process of a CsPbBr3 PeLED with the imprinted nanostructures[12].

    图 12  钙钛矿发光层为亚微米结构的PeLED结构示意图, 光线A, B, C表示光线原先束缚于发射层中, 通过亚微米结构进行光提取[11]

    Fig. 12.  Device schematic with submicrometre structure. Rays A, B and C, which represent light trapped in devices with a continuous emitting layer, can be extracted by the submicrometre structure[11].

    图 13  在厚度不同的钙钛矿发光层条件下外量子效率和电流密度的关系图, 钙钛矿发光层材料分别为(a) MAPbI3, (b) Cs0.2FA0.8PbI2.8Br0.2, (c) FAPbI3, (d) FAPbBr3[39]

    Fig. 13.  EQE vs. current density of PLEDs based on (a) MAPbI3, (b) Cs0.2FA0.8PbI2.8Br0.2, (c) FAPbI3, (d) FAPbBr3 thin films with various thicknesses[39].

    表 1  PeLEDs光提取研究进展

    Table 1.  Research progress of PeLEDs light extraction.

    发表
    时间
    器件结构光提取方法CEmax/cd·A–1EQEmax/%最大亮度/cd·m–2寿命参数T50参考
    文献
    20174LG/Buf-HIL/MAPbBr3/TPBi/LiF/Al电极18.03.813000[25]
    2018Ag/(ZnO/PEI)/CsPbI3NC /TCTA/(MoO3/Au/MoO3)电极11.21106[26]
    2018Au/HIL/MAPbBr3/TPBi/LiF/AL电极3.311270[27]
    2019m-ZAgZ/HAT-CN/TAPC/CsPbBr3/TPBi/Liq/Al电极7.214846[28]
    2018Glass/AnoHIL/MAPbBr3/TPBi/Li/AL电极428.66[29]
    2020Glass/Au/ZnO/MQW perovskite/
    TFB/MoO3/Au
    电极
    微腔
    20.2[31]
    2017Glass/ITO/PEDOT:PSS/(Agrods NPB)/
    CsPbBr3 NC/TPBi/LiF/Al
    激元1.420.438911[33]
    2017Au NPs/PVK:MAPbBr3:TPBi/
    TPBi/Cs2CO3/Al
    激元7.641.8316050[34]
    2019Glass/NHAs/ITO/Poly-TPD/MAPbI3/TPBi/LiF/Al微纳0.0120.53 W·sr –1·m–2[36]
    2019Glass/Epoxy/AAM(TiO2)/ITO/PEDOT:PSS/
    BA: CH3 NH3 PbBr3/F8/Ca/Ag
    微纳17.548668120 s[38]
    2019Glass/ITO/ZnO/PEDOT:PSS/
    CsPbBr3/TPBi/LiF/Al
    微纳88.728.2~25000[12]
    2018Glass/ITO/ZnO/ZnO-PEIE/
    FAPbI3/TFB/MoOx/Au
    薄膜形貌20.7390 W·sr –1· m–220 h[11]
    2020Glass/ITO/ PEDOT:PSS/Perovskite/
    B3PyMPM/LiF/Al
    器件结构17.679700[39]
    下载: 导出CSV
    Baidu
  • [1]

    Wang J P, Wang N N, Jin Y Z, Si J J, Tan Z K, Du H, Cheng L, Dai X L, Bai S, He H P, Ye Z Z, Lai M L, Friend R H, Huang W 2015 Adv. Mater. 27 2311Google Scholar

    [2]

    Meng F Y, Liu X Y, Chen Y X, Cai X Y, Li M K, Shi T T, Chen Z M, Chen D C, Yip H L, Ramanan C, Blom P W M, Su S J 2020 Adv. Funct. Mater. 2020 1910167Google Scholar

    [3]

    Lee S J, Park J H, Nam Y S, Lee B R, Zhao B D, Nuzzo D D, Jung E D, Jeon H, Kim J Y, Jeong H Y, Friend R H, Song M H 2018 ACS Nano 12 3417Google Scholar

    [4]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [5]

    Quan L N, Arquer F P G D, Sabatini R P, Sargent E H 2018 Adv. Mater. 30 1801996Google Scholar

    [6]

    Wei Z H, Xing J 2019 J. Phys. Chem. Lett. 10 3035Google Scholar

    [7]

    Zou Y, Yuan Z, Bai S, Gao F, Sun B 2019 Mater. Today Nano 5 100028Google Scholar

    [8]

    Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G 2016 Adv. Mater. 28 6804Google Scholar

    [9]

    Park M H, Park J, Lee J, So H S, Kim H, Jeong S H, Han T H, Wolf C, Lee H, Yoo S, Lee T W 2019 Adv. Funct. Mater. 29 1902017Google Scholar

    [10]

    Fang Z B, Chen W J, Shi Y L, Zhao J, Chu S L, Zhang J, Xiao Z G 2020 Adv. Funct. Mater. 30 1909754Google Scholar

    [11]

    Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z, Kong D C, Dai D X, Jin Y Z, Li G Q, Li H, Peng Q M, Wang J P, Huang W 2018 Nature 562 249Google Scholar

    [12]

    Shen Y, Cheng L P, Li Y Q, Li W, Chen J D, Lee S T, Tang J X 2019 Adv. Mater. 31 1901517Google Scholar

    [13]

    Lin K B, Xing J, Quan L N, Arquer F P G D, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H, Wei Z H 2018 Nature 562 245Google Scholar

    [14]

    Zhao B D, Bai S, Kim V, Lamboll R, Shivanna R, Auras F, Richter J M, Yang L, Dai L J, Alsari M, She X J, Liang L S, Zhang J B, Lilliu S, Gao P, Snaith H J, Wang J P, Greenham N C, Friend R H, Di D W 2018 Nat. Photonics 12 783Google Scholar

    [15]

    Zhao X F, Tan Z K 2019 Nat. Photonics 4851 50

    [16]

    Xu W D, Hu Q, Bai S, Bao C X, Miao Y F, Yuan Z C, Borzda T, Barker A J, Tyukalova E, Hu Z J, Kawecki M, Wang H Y, Yan Z B, Liu X J, Shi X B, Uvdal K, Fahlman M, Zhang W J, Duchamp M, Liu J M, Petrozza A, Wang J P, Liu L M, Huang W, Gao F 2019 Nat. Photonics 13 418

    [17]

    Bao C X, Xu W D, Yang J, Bai S, Teng P P, Yang Y, Wang J P, Zhao N, Zhang W J, Huang W, Gao F 2020 Nat. Electron. 3 156Google Scholar

    [18]

    方晓敏, 江孝伟, 赵建伟 2018 激光与光电子学进展 55 082302Google Scholar

    Fang X M, Jiang X W, Zhao J W 2018 Laser Optoelectronics Progress 55 082302Google Scholar

    [19]

    Hong K, Lee J L 2011 Electron. Mater. Lett. 7 77Google Scholar

    [20]

    Meng S S, Li Y Q, Tang J X 2018 Org. Electron. 61 351Google Scholar

    [21]

    李国龙, 黄卓寅, 李衎, 甄红宇, 沈伟东, 刘旭 2011 60 077207Google Scholar

    Li G L, Huang Z Y, Li K, Zhen H Y, Shen W D, Liu X 2011 Acta. Phys. Sin. 60 077207Google Scholar

    [22]

    Hsu C W, Lee Y C, Chen H L, Chou Y F 2012 Photonic. Nanostruct. 10 523Google Scholar

    [23]

    Gao C H, Zhang Y, Ma X J, Yu F X, Jia Y L, Lei Y L, Chen P, Sun W W, Xiong Z H 2018 Org. Electron. 58 88Google Scholar

    [24]

    Zhou Y, Wu G M, Gao D W, Xing G J, Zhu Y Y, Zhang Z Q, Cao Y 2012 Adv. Mat. Res. 465 268Google Scholar

    [25]

    Seo H K, Kim H, Lee J, Park M H, Jeong S H, Kim Y H, Kwon S J, Han T H, Yoo S, Lee T W 2017 Adv. Mater. 29 1605587Google Scholar

    [26]

    Lu M, Zhang X Y, Bai X, Wu H, Shen X Y, Zhang Y, Zhang W, Zheng W T, Song H W, Yu W W, Rogach A L 2018 ACS Energy Lett. 3 1571Google Scholar

    [27]

    Liu Y S, Guo S, Yi F S, Feng J, Sun H B 2018 Opt. Lett. 43 5524Google Scholar

    [28]

    Liu Y F, Ding T, Wang H R, Zhang Y T, Chen C, Chen X T, Duan Y 2020 Appl. Surf. Sci. 504 144442Google Scholar

    [29]

    Jeong S H, Woo S H, Han T H, Park M H, Cho H, Kim Y H, Cho H, Kim Y H, Cho H, Kim H, Yoo S, Lee T W 2017 Npg. Asia. Mater. 9 e411Google Scholar

    [30]

    Wu H, Zhang Y, Zhang X Y, Lu M, Sun C, Bai X, Zhang T Q, Sun G, Yu W W 2018 Adv. Electron. Mater. 4 1700285Google Scholar

    [31]

    Miao Y F, Cheng L, Zou W, Gu L H, Zhang J, Guo Q, Peng Q M, Xu M M, He Y R, Zhang S T, Cao Y, Li R Z, Wang N N, Huang W, Wang J P 2020 Light Sci. Appl. 9 89Google Scholar

    [32]

    Woo R W 1902 Proc. Phys. Soc. London 18 269Google Scholar

    [33]

    Zhang X L, Xu B, Wang W G, Liu S, Zheng Y J, Chen S M, Wang K, Sun X W 2017 ACS. Appl. Mater. Inter. 9 4926Google Scholar

    [34]

    Chen P, Xiong Z Y, Wu X Y, Shao M, Meng Y, Xiong Z H, Gao C H 2017 J. Phys. Chem. Lett. 8 3961Google Scholar

    [35]

    Zhang Y H, Sun H Q, Zhang S, Li S P, Wang X, Zhang X, Liu T Y, Guo Z Y 2019 Opt. Mater. 89 563Google Scholar

    [36]

    Mao J, Sha W E I, Zhang H, Ren X G, Zhuang J Q, Roy V A L, Wong K S, Choy W C H 2017 Adv. Funct. Mater. 27 1606525Google Scholar

    [37]

    Jeon S H, Zhao L F, Jung Y J, Kim J W, Kim S Y, Kang H, Jeong J H, Rand B P, Lee J H 2019 Small 15 1900135Google Scholar

    [38]

    Zhang Q P, Tavakoli M M, Gu L L, Zhang D Q, Tang L, Gao Y, Guo J, Lin Y J, Leung S F, Poddar S, Fu Y, Fan Z Y 2019 Nat. Commun. 10 727Google Scholar

    [39]

    Zhao L F, Lee K M, Roh K D, Khan S U Z, Rand B P 2019 Adv. Mater. 31 1805836Google Scholar

    [40]

    Lu J X, Feng W J, Mei G D, Sun J Y, Yan C Z, Zhang D, Lin K B, Wu D, Wang K, Wei Z H 2020 Adv. Sci. 7 2000689Google Scholar

  • [1] 张俊廷, 纪克, 谢禹, 李超. 基于钙钛矿的二维铁磁体Sr2RuO4单层.  , 2024, 73(22): 226101. doi: 10.7498/aps.73.20241042
    [2] 余毅, 安治东, 蔡晓艺, 郭明磊, 敬承斌, 李艳青. 锡基钙钛矿的研究进展及其在发光二极管中的应用.  , 2021, 70(4): 048503. doi: 10.7498/aps.70.20201284
    [3] 李雪, 曹宝龙, 王明昊, 冯增勤, 陈淑芬. 基于改性空穴注入层与复合发光层的高效钙钛矿发光二极管.  , 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [4] 郤育莺, 韩悦, 李国辉, 翟爱平, 冀婷, 郝玉英, 崔艳霞. 异质结构在光伏型卤化物钙钛矿光电转换器件中的应用.  , 2020, 69(16): 167804. doi: 10.7498/aps.69.20200591
    [5] 樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新. 发光铅卤钙钛矿纳米晶稳定性的研究进展.  , 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [6] 吴家龙, 窦永江, 张建凤, 王浩然, 杨绪勇. 溶液法制备的金属掺杂氧化镍空穴注入层在钙钛矿发光二极管上的应用.  , 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [7] 吴海妍, 唐建新, 李艳青. 基于缺陷态钝化的高效稳定蓝光钙钛矿发光二极管.  , 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [8] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池.  , 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [9] 黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛. 有机添加剂在金属卤化钙钛矿发光二极管中的应用.  , 2019, 68(15): 158505. doi: 10.7498/aps.68.20190307
    [10] 黄伟, 李跃龙, 任慧志, 王鹏阳, 魏长春, 侯国付, 张德坤, 许盛之, 王广才, 赵颖, 袁明鉴, 张晓丹. 基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管.  , 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [11] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展.  , 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [12] 时强, 李路平, 张勇辉, 张紫辉, 毕文刚. GaN/InxGa1-xN型最后一个量子势垒对发光二极管内量子效率的影响.  , 2017, 66(15): 158501. doi: 10.7498/aps.66.158501
    [13] 杨旭东, 陈汉, 毕恩兵, 韩礼元. 高效率钙钛矿太阳电池发展中的关键问题.  , 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [14] 陈湛旭, 万巍, 何影记, 陈耿炎, 陈泳竹. 利用单层密排的纳米球提高发光二极管的出光效率.  , 2015, 64(14): 148502. doi: 10.7498/aps.64.148502
    [15] 陈新莲, 孔凡敏, 李康, 高晖, 岳庆炀. 无序光子晶体提高GaN基蓝光发光二极管光提取效率的研究.  , 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [16] 李飞, 肖刘, 刘濮鲲, 袁广江, 易红霞, 万晓声. 行波管中多级降压收集极效率评估的研究.  , 2012, 61(10): 102901. doi: 10.7498/aps.61.102901
    [17] 岳庆炀, 孔凡敏, 李康, 赵佳. 基于缺陷光子晶体结构的GaN基发光二极管光提取效率的有关研究.  , 2012, 61(20): 208502. doi: 10.7498/aps.61.208502
    [18] 林瀚, 刘守, 张向苏, 刘宝林, 任雪畅. 全息技术制作二维光子晶体蓝宝石衬底提高发光二极管外量子效率.  , 2009, 58(2): 959-963. doi: 10.7498/aps.58.959
    [19] 陈健, 李小丽, 李海华, 王庆康. 基于正方和六角排列结构光子晶体对发光二极管出光效率的研究.  , 2009, 58(9): 6216-6221. doi: 10.7498/aps.58.6216
    [20] 李炳乾, 刘玉华, 冯玉春. 大功率GaN基发光二极管等效串联电阻的功率耗散及其对发光效率的影响.  , 2008, 57(1): 477-481. doi: 10.7498/aps.57.477
计量
  • 文章访问数:  8994
  • PDF下载量:  275
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-18
  • 修回日期:  2020-07-01
  • 上网日期:  2020-11-12
  • 刊出日期:  2020-11-05

/

返回文章
返回
Baidu
map