Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent progress of tin-based perovskites and their applications in light-emitting diodes

Yu Yi An Zhi-Dong Cai Xiao-Yi Guo Ming-Lei Jing Cheng-Bin Li Yan-Qing

Citation:

Recent progress of tin-based perovskites and their applications in light-emitting diodes

Yu Yi, An Zhi-Dong, Cai Xiao-Yi, Guo Ming-Lei, Jing Cheng-Bin, Li Yan-Qing
PDF
HTML
Get Citation
  • Lead halide perovskites have aroused widespread interest in recent years due to their superior optoelectronic properties, such as high absorption coefficient, high charge carrier mobility, high defect tolerance and high photoluminescence (PL) efficiency. However, one critical problem which potentially hampers their commercial applications is the toxicity caused by lead. To address this toxicity problem, a careful and strategic replacement of Pb2+ with other nontoxic candidate elements represents a promising direction. Tin (Sn), currently the most promising alternative to lead due to its structure and properties, has received extensiveattention. In this review, some recent developments of Sn-based perovskites and their applications in light-emitting diodes are summarized. Firstly, some synthesis methods of Sn-based perovskite materials are introduced. Then, the crystal structures and photoelectric properties of Sn-perovskites in different valence states are analyzed. Then, the potential application of Sn-based perovskite materials in light-emitting devices is presented and some methods to improve the performance of Sn-based PeLEDs are also summarized. Finally, the significant challenges in these Sn-based PeLEDs are pointed out and their possible solutions are suggested. It is expected that this review can conduce to an in-depth understanding of Sn-based halide materials and their application in PeLEDs.
      Corresponding author: Jing Cheng-Bin, cbjing@ee.ecnu.edu.cn ; Li Yan-Qing, yqli@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61520106012, 61722404, 51873138)
    [1]

    Zhao X, Ng J D A, Friend R H, Tan Z K 2018 ACS Photonics 5 3866Google Scholar

    [2]

    Lin K B, Xing J, Quan L N, de Arquer F P G, Gong X W, Lu J X, Xie L Q, Zhao W, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H, Wei Z H 2018 Nature 562 245Google Scholar

    [3]

    Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J P, Huang W 2018 Nature 562 249Google Scholar

    [4]

    Shen Y, Cheng L P, Li Y Q, Li W, Chen J D, Lee S T, Tang J X 2019 Adv. Mater. 31 1901517Google Scholar

    [5]

    Xu W D, Hu Q, Bai S, Bao C X, Miao Y F, Yuan Z C, Borzda T, Barker A J, Tyukalova E, Hu Z J, Kawecki M, Wang H Y, Yan Z B, Liu X J, Shi X B, Uvdal K, Fahlman M, Zhang W J, Duchamp M, Liu J M, Petrozza A, Wang J P, Liu L M, Huang W, Gao F 2019 Nat. Photonics 13 418

    [6]

    Hou L, Zhu Y H, Zhu J R, Li C Z 2019 J. Phys. Chem. C 123 31279Google Scholar

    [7]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [8]

    Cho H C, Wolf C, Kim J S, Yun H J, Bae J S, Kim H, Heo J M, Ahn S, Lee T W 2017 Adv. Mater. 29 1700579Google Scholar

    [9]

    Lu M, Zhang Y, Wang S X, Guo J, Yu W W, Rogach A L 2019 Adv. Funct. Mater. 29 1902008Google Scholar

    [10]

    Xiao Z, Yan Y F 2017 Adv. Energy Mater. 7 1701136Google Scholar

    [11]

    Gratzel M 2014 Nat. Mater. 13 838Google Scholar

    [12]

    Yin W J, Yang J H, Kang J, Yan Y F, Wei S H 2015 J. Mater. Chem. A. 3 8926Google Scholar

    [13]

    Zhao Y, Li C L, Jiang J Z, Wang B, Shen L 2020 Small 16 2001534Google Scholar

    [14]

    Li C L, Lu J R, Zhao Y, Sun L Y, Wang G X, Ma Y, Zhang S M, Zhou J R, Shen L, Huang W 2019 Small 15 1903599Google Scholar

    [15]

    Zhao Y, Li C L, Shen L 2019 Info. Mat. 1 164Google Scholar

    [16]

    Li C L, Wang H L, Wang F, Li T F, Xu M J, Wang H, Wang Z, Zhan X W, Hu W D, Shen L 2020 Light Sci. Appl. 9 31Google Scholar

    [17]

    Shen Y, Liu Y C, Ye H C, Zheng Y T, Wei Q, Xia Y D, Chen Y H, Zhao K, Huang W, Liu S F 2020 Angew. Chem. Int. Ed. 59 14896Google Scholar

    [18]

    Pan W, Yang B, Niu G, Xue K H, Du X, Yin L, Zhang M, Wu H, Miao X S, Tang J 2019 Adv. Mater. 31 1904405Google Scholar

    [19]

    Luo T, Zhang Y, Xu Z, Niu T, Wen J, Lu J, Jin S, Liu S F, Zhao K 2019 Adv. Mater. 31 1903848Google Scholar

    [20]

    Sani F, Shafie S, Lim H N, Musa A O 2018 Materials 11 1008Google Scholar

    [21]

    Wu C C, Zhang Q H, Liu G H, Zhang Z H, Wang D, Qu B, Chen Z J, Xiao L X 2020 Adv. Energy Mater. 10 1902496Google Scholar

    [22]

    Luo J J, Hu M C, Niu G D, Tang J 2019 ACS Appl. Mater. Interfaces 11 31575Google Scholar

    [23]

    Igbari F, Wang Z K, Liao L S 2019 Adv. Energy Mater. 9 1803150Google Scholar

    [24]

    Ghosh S, Pradhan B 2019 Chem. Nano. Mat. 5 300Google Scholar

    [25]

    Mao L L, Stoumpos C C, Kanatzidis M G 2019 J. Am. Chem. Soc. 141 1171Google Scholar

    [26]

    Cheng L, Jiang T, Cao Y, Yi C, Wang N N, Huang W, Wang J P 2019 Adv. Mater. 32 1904163Google Scholar

    [27]

    Grancini G, Nazeeruddin M K 2019 Nat. Reviews Mater. 4 4Google Scholar

    [28]

    Babayigit A, Ethirajan A, Muller M, Conings B 2016 Nat. Mater. 15 247Google Scholar

    [29]

    Fan Q Q, Biesold-McGee G V, Ma J Z, Xu Q N, Pan S, Peng J, Lin Z Q 2020 Angew. Chem. Int. Ed. 59 1030Google Scholar

    [30]

    Sun J, Yang J, Lee J I, Cho J H, Kang M S 2018 J. Phys. Chem. Lett. 9 1573Google Scholar

    [31]

    Ke W J, Kanatzidis M G 2019 Nat. Commun. 10 965Google Scholar

    [32]

    Ke W J, Stoumpos C C, Kanatzidis M G 2019 Adv. Mater. 31 1803230Google Scholar

    [33]

    Meng X Y, Lin J B, Liu X, He X, Wang Y, Noda T, Wu T H, Yang X D, Han L Y 2019 Adv. Mater. 31 1903721Google Scholar

    [34]

    Liao Y Q, Liu H F, Zhou W J, Yang D W, Shang Y Q, Shi Z F, Li B H, Jiang X Y, Zhang L J, Quan L N, Quintero-Bermudez R, Sutherland B R, Mi Q X, Sargent E H, Ning Z J 2017 J. Am. Chem. Soc. 139 6693Google Scholar

    [35]

    Hoefler S F, Trimmel G, Rath T 2017 Monatsh Chem. 148 795Google Scholar

    [36]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019Google Scholar

    [37]

    Fang Z B, Chen W J, Shi Y L, Zhao J, Chu S L, Zhang J, Xiao Z G 2020 Adv. Funct. Mater. 30 1909754Google Scholar

    [38]

    Fu P F, Huang M L, Shang Y Q, Yu N, Zhou H L, Zhang Y B, Chen S Y, Gong J K, Ning Z J 2018 ACS Appl. Mater. Interfaces 10 34363Google Scholar

    [39]

    Liao Y, Shang Y Q, Wei Q, Wang H, Ning Z J 2020 J. Phys. D: Appl. Phys. 53 414005Google Scholar

    [40]

    Zhang X T, Wang C C, Zhang Y, Zhang X Y, Wang S X, Lu M, Cui H N, Kershaw S V, Yu W W, Rogach A L 2018 ACS Energy Lett. 4 242Google Scholar

    [41]

    Lanzetta L, Marin-Beloqui J M, Sanchez-Molina I, Ding D, Haque S A 2017 ACS Energy Lett. 2 1662Google Scholar

    [42]

    Wang Y, Zou R M, Chang J, Fu Z W, Cao Y, Zhang L D, Wei Y Q, Kong D C, Zou W, Wen K C, Fan N, Wang N N, Huang W, Wang J P 2019 J. Phys. Chem. Lett. 10 453Google Scholar

    [43]

    El Ajjouri Y, Locardi F, Gélvez-Rueda M C, Prato M, Sessolo M, Ferretti M, Grozema F C, Palazon F, Bolink H J 2019 Energy Technol. 8 1900788Google Scholar

    [44]

    Li J H, Tan Z F, Hu M C, Chen C, Luo J J, Li S R, Gao L, Xiao Z W, Niu G D, Tang J 2019 Front. Optoelectron. 12 352Google Scholar

    [45]

    Lin T W, Su C, Lin C C 2019 J. Inf. Disp. 20 209Google Scholar

    [46]

    Tan Z F, Li J H, Zhang C, Li Z, Hu Q S, Xiao Z W, Kamiya T, Hosono H, Niu G D, Lifshitz E, Cheng Y B, Tang J 2018 Adv. Funct. Mater. 28 1801131Google Scholar

    [47]

    Han P G, Mao X, Yang S Q, Zhang F, Yang B, Wei D H, Deng W Q, Han K 2019 Angew. Chem. Int. Ed. 58 17231Google Scholar

    [48]

    Luo J J, Wang X M, Li S R, Liu J, Guo Y M, Niu G D, Yao L, Fu Y H, Gao L, Dong Q S, Zhao C Y, Leng M Y, Ma F Y, Liang W X, Wang L D, Jin S Y, Han J B, Zhang L J, Etheridge J, Wang J B, Yan Y F, Sargent E H, Tang J 2018 Nature 563 541Google Scholar

    [49]

    Hao F, Stoumpos C C, Guo P J, Zhou N J, Marks T J, Chang R P, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 11445Google Scholar

    [50]

    Liu J W, Ozaki M, Yakumaru S, Handa T, Nishikubo R, Kanemitsu Y, Saeki A, Murata Y, Murdey R, Wakamiya A 2018 Angew. Chem. Int. Ed. 57 13221Google Scholar

    [51]

    Zhu H L, Xiao J Y, Mao J, Zhang H, Zhao Y, Choy W C H 2017 Adv. Funct. Mater. 27 1605469Google Scholar

    [52]

    Moghe D, Wang L L, Traverse C J, Redoute A, Sponseller M, Brown P R, Bulović V, Lunt R R 2016 Nano Energy 28 469Google Scholar

    [53]

    Jung M C, Raga S R, Qi Y B 2016 RSC Adv. 6 2819Google Scholar

    [54]

    Funabiki F, Toda Y, Hosono H 2018 J. Phy. Chem. C 122 10749Google Scholar

    [55]

    Xi J, Wu Z X, Jiao B, Dong H, Ran C X, Piao C C, Lei T, Song T B, Ke W J, Yokoyama T, Hou X, Kanatzidis M G 2017 Adv. Mater. 29 1606964Google Scholar

    [56]

    Yokoyama T, Cao D H, Stoumpos C C, Song T B, Sato Y, Aramaki S, Kanatzidis M G 2016 J. Phys. Chem. Lett. 7 776Google Scholar

    [57]

    Lee B, Shin B, Park B 2019 Electron. Mater. Lett. 15 192Google Scholar

    [58]

    Hong W L, Huang Y C, Chang C Y, Zhang Z C, Tsai H R, Chang N Y, Chao Y C 2016 Adv. Mater. 28 8029Google Scholar

    [59]

    Wang Z B, Wang F Z, Zhao B, Qu S N, Hayat T, Alsaedi A, Sui L Z, Yuan K J, Zhang J Q, Wei Z X, Tan Z A 2020 J. Phys. Chem. Lett. 11 1120Google Scholar

    [60]

    Jellicoe T C, Richter J M, Glass H F, Tabachnyk M, Brady R, Dutton S E, Rao A, Friend R H, Credgington D, Greenham N C, Bohm M L 2016 J. Am. Chem. Soc. 138 2941Google Scholar

    [61]

    Wang H C, Wang W G, Tang A C, Tsai H Y, Bao Z, Ihara T, Yarita N, Tahara H, Kanemitsu Y, Chen S M, Liu R S 2017 Angew. Chem. Int. Ed. 56 13650Google Scholar

    [62]

    Zhou C K, Tian Y, Wang M C, Rose A, Besara T, Doyle N K, Yuan Z, Wang J C, Clark R, Hu Y Y, Siegrist T, Lin S C, Ma B 2017 Angew. Chem. Int. Ed. 56 9018Google Scholar

    [63]

    Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G 2012 J. Am. Chem. Soc. 134 8579Google Scholar

    [64]

    Benin B M, Dirin D N, Morad V, Wörle M, Yakunin S, Rainò G, Nazarenko O, Fischer M, Infante I, Kovalenko M V 2018 Angew. Chem. Int. Ed. 57 11329Google Scholar

    [65]

    Yuan F, Xi J, Dong H, Xi K, Zhang W W, Ran C X, Jiao B, Hou X, Jen A K Y, Wu Z X 2018 Phys. Status Solidi RRL 12 1800090Google Scholar

    [66]

    Zhou J, Luo J J, Rong X M, Wei P J, Molokeev M S, Huang Y, Zhao J, Liu Q L, Zhang X W, Tang J, Xia Z G 2019 Adv. Opt. Mater. 7 1900139Google Scholar

    [67]

    Li C, Lu X G, Ding W Z, Feng L M, Gao Y H, Guo Z M 2008 Acta Cryst. B 64 702Google Scholar

    [68]

    Yin H, Xian Y M, Zhang Y L, Li W Z, Fan J D 2019 Sol. RRL 3 1900148Google Scholar

    [69]

    Scaife D E, Weller P F, Fisher W G 1974 J. Solid State Chem. 9 308Google Scholar

    [70]

    Lai M L, Tay T Y, Sadhanala A, Dutton S E, Li G, Friend R H, Tan Z K 2016 J. Phys. Chem. Lett. 7 2653Google Scholar

    [71]

    Bernal C, Yang K S 2014 J.Phy. Chem. C 118 24383Google Scholar

    [72]

    Goyal A, McKechnie S, Pashov D, Tumas W, van Schilfgaarde M, Stevanović V 2018 Chem. Mater. 30 3920Google Scholar

    [73]

    Liu D, Sa R, Wang J, Wu K C 2019 J. Clust. Sci. 31 1103

    [74]

    Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G 2014 Nat. Photonics 8 489Google Scholar

    [75]

    Huang L Y, Lambrecht W R L 2013 Phys. Rev. B 88 165203Google Scholar

    [76]

    Pisanu A, Coduri M, Morana M, Ciftci Y O, Rizzo A, Listorti A, Gaboardi M, Bindi L, Queloz V I E, Milanese C, Grancini G, Malavasi L 2020 J. Mater. Chem. A 8 1875Google Scholar

    [77]

    Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar

    [78]

    Peedikakkandy L, Bhargava P 2016 RSC Adv. 6 19857Google Scholar

    [79]

    Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G 2012 JACS 134 8579

    [80]

    Takahashi Y, Obara R, Lin Z Z, Takahashi Y, Naito T, Inabe T, Ishibashi S, Terakura K 2011 Dalton Trans. 40 5563Google Scholar

    [81]

    Lee B, Stoumpos C C, Zhou N, Hao F, Malliakas C, Yeh C Y, Marks T J, Kanatzidis M G, Chang R P 2014 J. Am. Chem. Soc. 136 15379Google Scholar

    [82]

    Wang F, Ma J L, Xie F Y, Li L K, Chen J, Fan J, Zhao N 2016 Adv. Funct. Mater. 26 3417Google Scholar

    [83]

    Qian L, Sun Y L, Wu M M, Li C, Xie D, Ding L M, Shi G Q 2018 Nanoscale 10 6837Google Scholar

    [84]

    Lin J T, Liao C C, Hsu C S, Chen D G, Chen H M, Tsai M K, Chou P T, Chiu C W 2019 J. Am. Chem. Soc. 141 10324Google Scholar

    [85]

    Martinez-Sarti L, Jo S H, Kim Y H, Sessolo M, Palazon F, Lee T W, Bolink H J 2019 Nanoscale 11 12793Google Scholar

    [86]

    Zhou C K, Tian Y, Yuan Z, Lin H, Chen B, Clark R, Dilbeck T, Zhou Y, Hurley J, Neu J, Besara T, Siegrist T, Djurovich P, Ma B 2017 ACS Appl. Mater. Interfaces 9 44579Google Scholar

    [87]

    Zhou C K, Lin H R, Tian Y, Yuan Z, Clark R, Chen B H, van de Burgt L J, Wang J C, Zhou Y, Hanson K, Meisner Q J, Neu J, Besara T, Siegrist T, Lambers E, Djurovich P, Ma B 2018 Chem. Sci. 9 586Google Scholar

    [88]

    Maughan A E, Ganose A M, Bordelon M M, Miller E M, Scanlon D O, Neilson J R 2016 J. Am. Chem. Soc. 138 8453Google Scholar

    [89]

    Zimmermann I, Aghazada S, Nazeeruddin M K 2019 Angew. Chem. Int. Ed. 58 1072Google Scholar

    [90]

    Maughan A E, Ganose A M, Candia A M, Granger J T, Scanlon D O, Neilson J R 2018 Chem. Mater. 30 472Google Scholar

    [91]

    Maughan A E, Ganose A M, Almaker M A, Scanlon D O, Neilson J R 2018 Chem. Mater. 30 3909Google Scholar

    [92]

    Zhang X L, Cao W Y, Wang W G, Xu B, Liu S, Dai H T, Chen S M, Wang K, Sun X W 2016 Nano Energy 30 511Google Scholar

    [93]

    Gonzalez-Carrero S, Espallargas G M, Galian R E, Pérez-Prieto J 2015 J. Mater. Chem. A 3 14039Google Scholar

    [94]

    Wang X M, Meng W W, Liao W Q, Wang J B, Xiong R G, Yan Y F 2019 J. Phys. Chem. Lett. 10 501Google Scholar

    [95]

    Liang H Y, Yuan F L, Johnston A, Gao C C, Choubisa H, Gao Y, Wang Y K, Sagar L K, Sun B, Li P C, Bappi G, Chen B, Li J, Wang Y K, Dong Y T, Ma D X, Gao Y N, Liu Y C, Yuan M J, Saidaminov M I, Hoogland S, Lu Z H, Sargent E H 2020 Adv. Sci. 7 1903213Google Scholar

    [96]

    Kontos A G, Kaltzoglou A, Siranidi E, Palles D, Angeli G K, Arfanis M K, Psycharis V, Raptis Y S, Kamitsos E I, Trikalitis P N, Stoumpos C C, Kanatzidis M G, Falaras P 2017 Inorg. Chem. 56 84Google Scholar

    [97]

    Yang W F, Igbari F, Lou Y H, Wang Z K, Liao L S 2020 Adv. Energy Mater. 10 1902584Google Scholar

    [98]

    Xiao M, Gu S, Zhu P C, Tang M Y, Zhu W D, Lin R X, Chen C L, Xu W C, Yu T, Zhu J 2018 Adv. Opt. Mater. 6 1700615Google Scholar

    [99]

    Wong A B, Bekenstein Y, Kang J, Kley C S, Kim D, Gibson N A, Zhang D, Yu Y, Leone S R, Wang L W, Alivisatos A P, Yang P D 2018 Nano Lett. 18 2060Google Scholar

    [100]

    Zhu R, Luo Z, Chen H, Dong Y, Wu S T 2015 Opt. Express 23 23680Google Scholar

    [101]

    Hassan Y, Ashton O J, Park J H, Li G, Sakai N, Wenger B, Haghighirad A A, Noel N K, Song M H, Lee B R, Friend R H, Snaith H J 2019 J. Am. Chem. Soc. 141 1269Google Scholar

    [102]

    Yang J N, Song Y, Yao J S, Wang K H, Wang J J, Zhu B S, Yao M M, Rahman S U, Lan Y F, Fan F J, Yao H B 2020 J. Am. Chem. Soc. 142 2956Google Scholar

    [103]

    Tsai H, Nie W Y, Blancon J C, Stoumpos C C, Soe C M M, Yoo J, Crochet J, Tretiak S, Even J, Sadhanala A, Azzellino G, Brenes R, Ajayan P M, Bulovic V, Stranks S D, Friend R H, Kanatzidis M G, Mohite A D 2018 Adv. Mater. 30 1704217Google Scholar

    [104]

    Wang J, Shen H Z, Li W C, Wang S, Li J Z, Li D H 2019 Adv. Sci. 6 1802019Google Scholar

    [105]

    Lin H, Zhou C K, Tian Y, Siegrist T, Ma B W 2018 ACS Energy Lett. 3 54Google Scholar

    [106]

    Chen S, Shi G 2017 Adv. Mater. 29 1605448Google Scholar

    [107]

    Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N 2014 Adv. Mater. 26 7122Google Scholar

    [108]

    Song T B, Yokoyama T, Aramaki S, Kanatzidis M G 2017 ACS Energy Lett. 2 897Google Scholar

    [109]

    Li W Z, Li J W, Li J L, Fan J D, Mai Y H, Wang L D 2016 J. Mater. Chem. A 4 17104Google Scholar

    [110]

    Gao C, Jiang Y, Sun C, Han J, He T, Huang Y, Yao K, Han M, Wang X, Wang Y, Gao Y, Liu Y, Yuan M, Liang H 2020 ACS Photonics 7 1915Google Scholar

    [111]

    Hoshi H, Shigeeda N, Dai T 2016 Mater. Lett. 183 391Google Scholar

    [112]

    Ricciarelli D, Meggiolaro D, Ambrosio F, De Angelis F 2020 ACS Energy Lett. 5 2787Google Scholar

    [113]

    Meng X Y, Lin J B, Liu X, He X, Wang Y, Noda T, Wu T H, Yang X D, Han L Y 2019 Advanced Materials 31 1903721

  • 图 1  元素周期表中与铅相邻的元素[30]

    Figure 1.  Elements adjacent to lead in the periodic table[30].

    图 2  (a) 二维锡基钙钛矿薄膜的制备过程示意图[59]; (b) Cs2SnCl6 纳米晶的形成和Mn2+离子掺杂机制示意图[45]; (c) 控制合成条件制备1D和0D溴化锡钙钛矿示意图[62]

    Figure 2.  (a) Schematic illustration of the fabrication process for 2D tin-based perovskite thin films by solution method[59]; (b) schematic illustration of the Cs2SnCl6 NC formation and Mn2+ ion doping mechanisms[45]; (c) synthetic schemes for the preparations of 1D and 0D Sn bromide perovskites by carefully controlling synthetic conditions[62].

    图 3  (a) ABX3钙钛矿晶体的晶胞[70]; (b) CsSnX3 (X = Cl, Cl0.5Br0.5, Br, Br0.5I0.5, I)钙钛矿纳米晶的PXRD谱图[60]; (c) 各种钙钛矿的容差因子(t); (d) 各种钙钛矿的八面体因子(μ)[68]

    Figure 3.  (a) Unit cell of ABX3 perovskite crystal[70]; (b) PXRD spectra of CsSnX3 (X = Cl, Cl0.5Br0.5, Br, Br0.5I0.5, I) perovskite nanocrystals[60]; (c) tolerance factor (t) of various perovskites; (d) octahedral factor (μ) of various perovskites[68].

    图 4  (a) 概述MA(Pb1–xSnx)I3中带隙变化起源的示意图, 阴影区域代表价带和导带[72]; (b) 卤化物钙钛矿太阳能电池的光学吸收原理图[12]; (c) α-CsSnI3, α-CsSnBr3, and α-CsSnCl3的QSGW带结构和部分态密度[75]; (d) BZA2SnI4电子带结构的DFT计算; (e) BZA2SnI4总态密度和部分态密度的DFT计算[76]

    Figure 4.  (a) Schematic summarizing the origin of the band gap bowing in MA(Pb1–xSnx)I3, shaded regions represent the valence and conduction bands[72]; (b) schematic optical absorption of halide perovskite solar cell absorber[12]; (c) QSGW band structures and partial densities of states of α-CsSnI3, α-CsSnBr3, and α-CsSnCl3[75]; (d) DFT calculations of electronic band structures for BZA2SnI4; (e) DFT calculations of total and partial density of states (PDOS) for BZA2SnI4[76].

    图 5  (a) 纯卤素和混合卤素的CsSnX3薄膜的归一化吸收光谱和稳态荧光光谱[65]; (b) 不同阳离子(CH3NH3+和Pb2+) ABI3的光致发光光谱[78]; (c) (PEA)2SnX4的钙钛矿薄膜的归一化吸收(实线)和荧光(虚线)光谱[41]

    Figure 5.  (a) Normalized absorption spectra and steady-state PL spectra of CsSnX3 films containing pure and mixed halides[65]; (b) photoluminescence spectra for ABI3 with different cations (CH3NH3+ and Pb2+)[78]; (c) normalized absorbance (solid lines) and PL (dashed lines) spectra of (PEA)2SnX4 perovskite thin films processed on glass[41].

    图 6  (a) CsSnI3电导率随温度变化关系图[79]; (b) 由HI溶液(黑色)生长的和由EtOH溶液(红色)生长的单晶MASnI3的电阻率与温度的关系[80]

    Figure 6.  (a) Temperature dependence of the electrical conductivity of CsSnI3[79]; (b) temperature dependence of the electrical resistivity of single-crystal MASnI3 grown from the HI solution(black)and that grown from the EtOH solution (red)[80].

    图 7  (a) MASnI3和(b) FASnI3的电阻率在不同RH时随时间的变化关系[82]; 由溶液法获得的 (c) MASnI3和(d) FASnI3的单晶电阻率在5−330 K范围内随温度变化曲线[36]

    Figure 7.  Resistivity of (a) MASnI3 and (b) FASnI3 as a function of the aging time in air at 60% and 10% RH, respectively[82]; single-crystal temperature-dependent resistivity plots of (c) MASnI3 and (d) FASnI3 in the 5−330 K temperature range. The specimens were obtained from the solution method[36].

    图 8  (a) (RNH2)2SnBr4的光致发光光谱(在316 nm光下激发)[6]; (b) 由有机配体包围的0D Sn混合卤素钙钛矿(C4N2H14Br)4SnBrxI6–x(x = 3)的单晶结构[86]; (c) 室温下(C4N2H14Br)4SnBrxI6–x钙钛矿晶体的激发(蓝线)和发射(红线)光谱[86]; (d) 由积分球收集的(C4N2H14Br)4SnBrxI6–x (x = 3)晶体的参照和发射光谱[86]

    Figure 8.  (a) Photoluminescence spectra of (RNH2)2SnBr4 (excited by 316 nm)[6]; (b) single-crystal structure of the 0D Sn mixed-halide perovskite (C4N2H14Br)4SnBrxI6–x (x = 3) surrounded by organic ligands[86]; (c) excitation (blue line) and emission (red line) spectra of bulk Sn mixed-halide perovskite crystals at room temperature[86]; (d) excitation line of reference and emission spectrum of (C4N2H14Br)4SnBrxI6–x (x = 3) crystals collected by an integrating sphere[86].

    图 9  (a) Cs2SnI6的晶体结构[22]; (b) A2SnI6的粉末X射线衍射图样和Rietveld细化; (c) Cs2SnI6, (CH3NH3)2SnI6和(CH(NH2)2)2SnI6的分离单元结构[90]

    Figure 9.  (a) Crystal structure of Cs2SnI6[22]; (b) laboratory powder X-ray diffraction patterns and Rietveld refinements showing phase purity of the A2SnI6 series; (c) structures of Cs2SnI6, (CH3NH3)2SnI6, and (CH(NH2)2)2SnI6 showing the isolated octahedral units[90].

    图 10  (a) 通过GGA功能计算的Cs2SnI6化合物的能带结构和(b) PDOS[81]; 使HSE06+SOC计算的Rb2SnI6的(c) P4/mnc和(d) P21/n相的能带结构[91]

    Figure 10.  (a) Calculated band structure and (b) PDOS of the Cs2SnI6 compound via the GGA functional[81]; band structures calculated using HSE06+SOC for the (c) P4/mnc and (d) P21/n phases of Rb2SnI6[91].

    图 11  (a) A2SnI6系列每个成员的电阻率作为温度的函数[90]; (b) 使用4探针配置收集的Rb2SnI6(IV)的温度依赖性电阻率数据[91]; (c) A2SnI6空位有序双钙钛矿的实验和计算得出的Hellwarth(μeH)电子迁移率与钙钛矿容差因子的函数关系图[91]

    Figure 11.  (a) Electrical resistivity as a function of temperature for each member of the A2SnI6 series[90]; (b) temperature-dependent resistivity data of rubidium tin(IV) iodide collected using a 4-probe configuration with Pt wires and Ag paste[91]; (c) experimentally and computationally derived Hellwarth (μeH) electron mobilities of the A2SnI6 vacancy-ordered double perovskites plotted as a function of perovskite tolerance factor[91].

    图 12  (a) 裸露的CsSnI3薄膜在大气环境条件下的照片; (b) 常温条件下封装器件的照片[58]

    Figure 12.  (a) Photographs of a bare CsSnI3 film in ambient condition; (b) photographs of encapsulated devices put in ambient condition[58].

    图 13  (a) (PEA)2SnX4钙钛矿的总体晶体示意图[41]; (b) (PEA)2SnX4钙钛矿体系的归一化吸光度(实线)和PL(虚线)光谱[41]; (c) 基于PEA2SnI4和TEA2SnI4的PeLED器件的电流密度与电压关系(J-V)曲线和亮度电压(L-V)特性[59]

    Figure 13.  (a) General crystal schematic of a (PEA)2SnX4 perovskite[41]; (b) normalized absorbance (solid lines) and PL (dashed lines) spectra of (PEA)2SnX4[41]; (c) current density versus voltage (JV) and luminance versus voltage (LV) characteristics for the PeLED devices based on PEA2SnI4 and TEA2SnI4[59].

    图 14  (a) HPA将Sn4+还原为Sn2+的机制; (b) 在不同电压下工作的器件的EL光谱; (c) 没有HPA添加剂的高分辨率Sn 3 d内层电子的XPS能谱; (d) 有HPA添加剂的高分辨率Sn 3 d内层电子的XPS能谱; (e) EQE与电流密度的关系[95]

    Figure 14.  (a) Mechanism of HPA reduction of Sn4+ to Sn2+; (b) EL spectra of the device operating under different voltages; high-resolution Sn 3 d core level XPS spectra (c) without or (d) with HPA additive; (e) EQE versus current density[95].

    表 1  部分锡基和铅基PeLEDs的总结

    Table 1.  Summaries of Sn-based PeLEDs and Pb-based PeLEDs.

    年份器件结构优化方式电致发光
    峰/nm
    半峰
    宽/nm
    最大亮度/
    辐射率
    EQE/%参考
    文献
    2018ITO/ZnO/PEI/(C18H35NH3)2SnBr4/TCTA/MnO3/Al低维621162350 cd/m20.1[40]
    2019ITO/PVK/(PEA)3.5Cs5Sn4.5I17.5/TmPyPB/LiF/Al低维92040 W/(sr·m2)3.01[42]
    2020ITO/PEDOT:PSS/TEA2SnI4/TPBi/LiF/Al低维63828322 cd/m20.62[59]
    2016ITO/PEDOT:PSS/CsSnI3/PBD/LiF/Al95040 W/(sr·m2)3.8[58]
    2018ITO/LiF/CsSnBr3/LiF/ZnS/Al封装层672172 cd/m20.34[65]
    2020ITO/PEDOT:PSS/(PEA)2SnI4/TPBi/LiF/Al还原剂6332470 cd/m20.3[88]
    2020ITO/PEDOT:PSS/(PEA)2SnI4/TPBi/LiF/Al还原剂632132 cd/m20.72[110]
    2020ITO/PEDOT:PSS/(PEA)2SnI4/TPBi/LiF/Al还原剂630355 cd/m20.52[39]
    2018ITO/PEDOT:PSS/CsPbBr3/PMMA/B3 PYMPM/LiF/Al5252014000 cd/m220.3[2]
    2018ITO/ZnO-PEIE/FAPbI3/TFB/MoOx/Au800390 W/(sr·m2)20.7[3]
    2019ITO/ZnO-PEIE/FAPbI3/TFB/MoOx/Au800308 W/(sr·m2)21.6[5]
    2019ITO/poly-TPD/FA0.33Cs0.67Pb(I0.7Br0.3)3/TPBi/LiF/Al6943720.9[37]
    DownLoad: CSV
    Baidu
  • [1]

    Zhao X, Ng J D A, Friend R H, Tan Z K 2018 ACS Photonics 5 3866Google Scholar

    [2]

    Lin K B, Xing J, Quan L N, de Arquer F P G, Gong X W, Lu J X, Xie L Q, Zhao W, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H, Wei Z H 2018 Nature 562 245Google Scholar

    [3]

    Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J P, Huang W 2018 Nature 562 249Google Scholar

    [4]

    Shen Y, Cheng L P, Li Y Q, Li W, Chen J D, Lee S T, Tang J X 2019 Adv. Mater. 31 1901517Google Scholar

    [5]

    Xu W D, Hu Q, Bai S, Bao C X, Miao Y F, Yuan Z C, Borzda T, Barker A J, Tyukalova E, Hu Z J, Kawecki M, Wang H Y, Yan Z B, Liu X J, Shi X B, Uvdal K, Fahlman M, Zhang W J, Duchamp M, Liu J M, Petrozza A, Wang J P, Liu L M, Huang W, Gao F 2019 Nat. Photonics 13 418

    [6]

    Hou L, Zhu Y H, Zhu J R, Li C Z 2019 J. Phys. Chem. C 123 31279Google Scholar

    [7]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [8]

    Cho H C, Wolf C, Kim J S, Yun H J, Bae J S, Kim H, Heo J M, Ahn S, Lee T W 2017 Adv. Mater. 29 1700579Google Scholar

    [9]

    Lu M, Zhang Y, Wang S X, Guo J, Yu W W, Rogach A L 2019 Adv. Funct. Mater. 29 1902008Google Scholar

    [10]

    Xiao Z, Yan Y F 2017 Adv. Energy Mater. 7 1701136Google Scholar

    [11]

    Gratzel M 2014 Nat. Mater. 13 838Google Scholar

    [12]

    Yin W J, Yang J H, Kang J, Yan Y F, Wei S H 2015 J. Mater. Chem. A. 3 8926Google Scholar

    [13]

    Zhao Y, Li C L, Jiang J Z, Wang B, Shen L 2020 Small 16 2001534Google Scholar

    [14]

    Li C L, Lu J R, Zhao Y, Sun L Y, Wang G X, Ma Y, Zhang S M, Zhou J R, Shen L, Huang W 2019 Small 15 1903599Google Scholar

    [15]

    Zhao Y, Li C L, Shen L 2019 Info. Mat. 1 164Google Scholar

    [16]

    Li C L, Wang H L, Wang F, Li T F, Xu M J, Wang H, Wang Z, Zhan X W, Hu W D, Shen L 2020 Light Sci. Appl. 9 31Google Scholar

    [17]

    Shen Y, Liu Y C, Ye H C, Zheng Y T, Wei Q, Xia Y D, Chen Y H, Zhao K, Huang W, Liu S F 2020 Angew. Chem. Int. Ed. 59 14896Google Scholar

    [18]

    Pan W, Yang B, Niu G, Xue K H, Du X, Yin L, Zhang M, Wu H, Miao X S, Tang J 2019 Adv. Mater. 31 1904405Google Scholar

    [19]

    Luo T, Zhang Y, Xu Z, Niu T, Wen J, Lu J, Jin S, Liu S F, Zhao K 2019 Adv. Mater. 31 1903848Google Scholar

    [20]

    Sani F, Shafie S, Lim H N, Musa A O 2018 Materials 11 1008Google Scholar

    [21]

    Wu C C, Zhang Q H, Liu G H, Zhang Z H, Wang D, Qu B, Chen Z J, Xiao L X 2020 Adv. Energy Mater. 10 1902496Google Scholar

    [22]

    Luo J J, Hu M C, Niu G D, Tang J 2019 ACS Appl. Mater. Interfaces 11 31575Google Scholar

    [23]

    Igbari F, Wang Z K, Liao L S 2019 Adv. Energy Mater. 9 1803150Google Scholar

    [24]

    Ghosh S, Pradhan B 2019 Chem. Nano. Mat. 5 300Google Scholar

    [25]

    Mao L L, Stoumpos C C, Kanatzidis M G 2019 J. Am. Chem. Soc. 141 1171Google Scholar

    [26]

    Cheng L, Jiang T, Cao Y, Yi C, Wang N N, Huang W, Wang J P 2019 Adv. Mater. 32 1904163Google Scholar

    [27]

    Grancini G, Nazeeruddin M K 2019 Nat. Reviews Mater. 4 4Google Scholar

    [28]

    Babayigit A, Ethirajan A, Muller M, Conings B 2016 Nat. Mater. 15 247Google Scholar

    [29]

    Fan Q Q, Biesold-McGee G V, Ma J Z, Xu Q N, Pan S, Peng J, Lin Z Q 2020 Angew. Chem. Int. Ed. 59 1030Google Scholar

    [30]

    Sun J, Yang J, Lee J I, Cho J H, Kang M S 2018 J. Phys. Chem. Lett. 9 1573Google Scholar

    [31]

    Ke W J, Kanatzidis M G 2019 Nat. Commun. 10 965Google Scholar

    [32]

    Ke W J, Stoumpos C C, Kanatzidis M G 2019 Adv. Mater. 31 1803230Google Scholar

    [33]

    Meng X Y, Lin J B, Liu X, He X, Wang Y, Noda T, Wu T H, Yang X D, Han L Y 2019 Adv. Mater. 31 1903721Google Scholar

    [34]

    Liao Y Q, Liu H F, Zhou W J, Yang D W, Shang Y Q, Shi Z F, Li B H, Jiang X Y, Zhang L J, Quan L N, Quintero-Bermudez R, Sutherland B R, Mi Q X, Sargent E H, Ning Z J 2017 J. Am. Chem. Soc. 139 6693Google Scholar

    [35]

    Hoefler S F, Trimmel G, Rath T 2017 Monatsh Chem. 148 795Google Scholar

    [36]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019Google Scholar

    [37]

    Fang Z B, Chen W J, Shi Y L, Zhao J, Chu S L, Zhang J, Xiao Z G 2020 Adv. Funct. Mater. 30 1909754Google Scholar

    [38]

    Fu P F, Huang M L, Shang Y Q, Yu N, Zhou H L, Zhang Y B, Chen S Y, Gong J K, Ning Z J 2018 ACS Appl. Mater. Interfaces 10 34363Google Scholar

    [39]

    Liao Y, Shang Y Q, Wei Q, Wang H, Ning Z J 2020 J. Phys. D: Appl. Phys. 53 414005Google Scholar

    [40]

    Zhang X T, Wang C C, Zhang Y, Zhang X Y, Wang S X, Lu M, Cui H N, Kershaw S V, Yu W W, Rogach A L 2018 ACS Energy Lett. 4 242Google Scholar

    [41]

    Lanzetta L, Marin-Beloqui J M, Sanchez-Molina I, Ding D, Haque S A 2017 ACS Energy Lett. 2 1662Google Scholar

    [42]

    Wang Y, Zou R M, Chang J, Fu Z W, Cao Y, Zhang L D, Wei Y Q, Kong D C, Zou W, Wen K C, Fan N, Wang N N, Huang W, Wang J P 2019 J. Phys. Chem. Lett. 10 453Google Scholar

    [43]

    El Ajjouri Y, Locardi F, Gélvez-Rueda M C, Prato M, Sessolo M, Ferretti M, Grozema F C, Palazon F, Bolink H J 2019 Energy Technol. 8 1900788Google Scholar

    [44]

    Li J H, Tan Z F, Hu M C, Chen C, Luo J J, Li S R, Gao L, Xiao Z W, Niu G D, Tang J 2019 Front. Optoelectron. 12 352Google Scholar

    [45]

    Lin T W, Su C, Lin C C 2019 J. Inf. Disp. 20 209Google Scholar

    [46]

    Tan Z F, Li J H, Zhang C, Li Z, Hu Q S, Xiao Z W, Kamiya T, Hosono H, Niu G D, Lifshitz E, Cheng Y B, Tang J 2018 Adv. Funct. Mater. 28 1801131Google Scholar

    [47]

    Han P G, Mao X, Yang S Q, Zhang F, Yang B, Wei D H, Deng W Q, Han K 2019 Angew. Chem. Int. Ed. 58 17231Google Scholar

    [48]

    Luo J J, Wang X M, Li S R, Liu J, Guo Y M, Niu G D, Yao L, Fu Y H, Gao L, Dong Q S, Zhao C Y, Leng M Y, Ma F Y, Liang W X, Wang L D, Jin S Y, Han J B, Zhang L J, Etheridge J, Wang J B, Yan Y F, Sargent E H, Tang J 2018 Nature 563 541Google Scholar

    [49]

    Hao F, Stoumpos C C, Guo P J, Zhou N J, Marks T J, Chang R P, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 11445Google Scholar

    [50]

    Liu J W, Ozaki M, Yakumaru S, Handa T, Nishikubo R, Kanemitsu Y, Saeki A, Murata Y, Murdey R, Wakamiya A 2018 Angew. Chem. Int. Ed. 57 13221Google Scholar

    [51]

    Zhu H L, Xiao J Y, Mao J, Zhang H, Zhao Y, Choy W C H 2017 Adv. Funct. Mater. 27 1605469Google Scholar

    [52]

    Moghe D, Wang L L, Traverse C J, Redoute A, Sponseller M, Brown P R, Bulović V, Lunt R R 2016 Nano Energy 28 469Google Scholar

    [53]

    Jung M C, Raga S R, Qi Y B 2016 RSC Adv. 6 2819Google Scholar

    [54]

    Funabiki F, Toda Y, Hosono H 2018 J. Phy. Chem. C 122 10749Google Scholar

    [55]

    Xi J, Wu Z X, Jiao B, Dong H, Ran C X, Piao C C, Lei T, Song T B, Ke W J, Yokoyama T, Hou X, Kanatzidis M G 2017 Adv. Mater. 29 1606964Google Scholar

    [56]

    Yokoyama T, Cao D H, Stoumpos C C, Song T B, Sato Y, Aramaki S, Kanatzidis M G 2016 J. Phys. Chem. Lett. 7 776Google Scholar

    [57]

    Lee B, Shin B, Park B 2019 Electron. Mater. Lett. 15 192Google Scholar

    [58]

    Hong W L, Huang Y C, Chang C Y, Zhang Z C, Tsai H R, Chang N Y, Chao Y C 2016 Adv. Mater. 28 8029Google Scholar

    [59]

    Wang Z B, Wang F Z, Zhao B, Qu S N, Hayat T, Alsaedi A, Sui L Z, Yuan K J, Zhang J Q, Wei Z X, Tan Z A 2020 J. Phys. Chem. Lett. 11 1120Google Scholar

    [60]

    Jellicoe T C, Richter J M, Glass H F, Tabachnyk M, Brady R, Dutton S E, Rao A, Friend R H, Credgington D, Greenham N C, Bohm M L 2016 J. Am. Chem. Soc. 138 2941Google Scholar

    [61]

    Wang H C, Wang W G, Tang A C, Tsai H Y, Bao Z, Ihara T, Yarita N, Tahara H, Kanemitsu Y, Chen S M, Liu R S 2017 Angew. Chem. Int. Ed. 56 13650Google Scholar

    [62]

    Zhou C K, Tian Y, Wang M C, Rose A, Besara T, Doyle N K, Yuan Z, Wang J C, Clark R, Hu Y Y, Siegrist T, Lin S C, Ma B 2017 Angew. Chem. Int. Ed. 56 9018Google Scholar

    [63]

    Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G 2012 J. Am. Chem. Soc. 134 8579Google Scholar

    [64]

    Benin B M, Dirin D N, Morad V, Wörle M, Yakunin S, Rainò G, Nazarenko O, Fischer M, Infante I, Kovalenko M V 2018 Angew. Chem. Int. Ed. 57 11329Google Scholar

    [65]

    Yuan F, Xi J, Dong H, Xi K, Zhang W W, Ran C X, Jiao B, Hou X, Jen A K Y, Wu Z X 2018 Phys. Status Solidi RRL 12 1800090Google Scholar

    [66]

    Zhou J, Luo J J, Rong X M, Wei P J, Molokeev M S, Huang Y, Zhao J, Liu Q L, Zhang X W, Tang J, Xia Z G 2019 Adv. Opt. Mater. 7 1900139Google Scholar

    [67]

    Li C, Lu X G, Ding W Z, Feng L M, Gao Y H, Guo Z M 2008 Acta Cryst. B 64 702Google Scholar

    [68]

    Yin H, Xian Y M, Zhang Y L, Li W Z, Fan J D 2019 Sol. RRL 3 1900148Google Scholar

    [69]

    Scaife D E, Weller P F, Fisher W G 1974 J. Solid State Chem. 9 308Google Scholar

    [70]

    Lai M L, Tay T Y, Sadhanala A, Dutton S E, Li G, Friend R H, Tan Z K 2016 J. Phys. Chem. Lett. 7 2653Google Scholar

    [71]

    Bernal C, Yang K S 2014 J.Phy. Chem. C 118 24383Google Scholar

    [72]

    Goyal A, McKechnie S, Pashov D, Tumas W, van Schilfgaarde M, Stevanović V 2018 Chem. Mater. 30 3920Google Scholar

    [73]

    Liu D, Sa R, Wang J, Wu K C 2019 J. Clust. Sci. 31 1103

    [74]

    Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G 2014 Nat. Photonics 8 489Google Scholar

    [75]

    Huang L Y, Lambrecht W R L 2013 Phys. Rev. B 88 165203Google Scholar

    [76]

    Pisanu A, Coduri M, Morana M, Ciftci Y O, Rizzo A, Listorti A, Gaboardi M, Bindi L, Queloz V I E, Milanese C, Grancini G, Malavasi L 2020 J. Mater. Chem. A 8 1875Google Scholar

    [77]

    Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar

    [78]

    Peedikakkandy L, Bhargava P 2016 RSC Adv. 6 19857Google Scholar

    [79]

    Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G 2012 JACS 134 8579

    [80]

    Takahashi Y, Obara R, Lin Z Z, Takahashi Y, Naito T, Inabe T, Ishibashi S, Terakura K 2011 Dalton Trans. 40 5563Google Scholar

    [81]

    Lee B, Stoumpos C C, Zhou N, Hao F, Malliakas C, Yeh C Y, Marks T J, Kanatzidis M G, Chang R P 2014 J. Am. Chem. Soc. 136 15379Google Scholar

    [82]

    Wang F, Ma J L, Xie F Y, Li L K, Chen J, Fan J, Zhao N 2016 Adv. Funct. Mater. 26 3417Google Scholar

    [83]

    Qian L, Sun Y L, Wu M M, Li C, Xie D, Ding L M, Shi G Q 2018 Nanoscale 10 6837Google Scholar

    [84]

    Lin J T, Liao C C, Hsu C S, Chen D G, Chen H M, Tsai M K, Chou P T, Chiu C W 2019 J. Am. Chem. Soc. 141 10324Google Scholar

    [85]

    Martinez-Sarti L, Jo S H, Kim Y H, Sessolo M, Palazon F, Lee T W, Bolink H J 2019 Nanoscale 11 12793Google Scholar

    [86]

    Zhou C K, Tian Y, Yuan Z, Lin H, Chen B, Clark R, Dilbeck T, Zhou Y, Hurley J, Neu J, Besara T, Siegrist T, Djurovich P, Ma B 2017 ACS Appl. Mater. Interfaces 9 44579Google Scholar

    [87]

    Zhou C K, Lin H R, Tian Y, Yuan Z, Clark R, Chen B H, van de Burgt L J, Wang J C, Zhou Y, Hanson K, Meisner Q J, Neu J, Besara T, Siegrist T, Lambers E, Djurovich P, Ma B 2018 Chem. Sci. 9 586Google Scholar

    [88]

    Maughan A E, Ganose A M, Bordelon M M, Miller E M, Scanlon D O, Neilson J R 2016 J. Am. Chem. Soc. 138 8453Google Scholar

    [89]

    Zimmermann I, Aghazada S, Nazeeruddin M K 2019 Angew. Chem. Int. Ed. 58 1072Google Scholar

    [90]

    Maughan A E, Ganose A M, Candia A M, Granger J T, Scanlon D O, Neilson J R 2018 Chem. Mater. 30 472Google Scholar

    [91]

    Maughan A E, Ganose A M, Almaker M A, Scanlon D O, Neilson J R 2018 Chem. Mater. 30 3909Google Scholar

    [92]

    Zhang X L, Cao W Y, Wang W G, Xu B, Liu S, Dai H T, Chen S M, Wang K, Sun X W 2016 Nano Energy 30 511Google Scholar

    [93]

    Gonzalez-Carrero S, Espallargas G M, Galian R E, Pérez-Prieto J 2015 J. Mater. Chem. A 3 14039Google Scholar

    [94]

    Wang X M, Meng W W, Liao W Q, Wang J B, Xiong R G, Yan Y F 2019 J. Phys. Chem. Lett. 10 501Google Scholar

    [95]

    Liang H Y, Yuan F L, Johnston A, Gao C C, Choubisa H, Gao Y, Wang Y K, Sagar L K, Sun B, Li P C, Bappi G, Chen B, Li J, Wang Y K, Dong Y T, Ma D X, Gao Y N, Liu Y C, Yuan M J, Saidaminov M I, Hoogland S, Lu Z H, Sargent E H 2020 Adv. Sci. 7 1903213Google Scholar

    [96]

    Kontos A G, Kaltzoglou A, Siranidi E, Palles D, Angeli G K, Arfanis M K, Psycharis V, Raptis Y S, Kamitsos E I, Trikalitis P N, Stoumpos C C, Kanatzidis M G, Falaras P 2017 Inorg. Chem. 56 84Google Scholar

    [97]

    Yang W F, Igbari F, Lou Y H, Wang Z K, Liao L S 2020 Adv. Energy Mater. 10 1902584Google Scholar

    [98]

    Xiao M, Gu S, Zhu P C, Tang M Y, Zhu W D, Lin R X, Chen C L, Xu W C, Yu T, Zhu J 2018 Adv. Opt. Mater. 6 1700615Google Scholar

    [99]

    Wong A B, Bekenstein Y, Kang J, Kley C S, Kim D, Gibson N A, Zhang D, Yu Y, Leone S R, Wang L W, Alivisatos A P, Yang P D 2018 Nano Lett. 18 2060Google Scholar

    [100]

    Zhu R, Luo Z, Chen H, Dong Y, Wu S T 2015 Opt. Express 23 23680Google Scholar

    [101]

    Hassan Y, Ashton O J, Park J H, Li G, Sakai N, Wenger B, Haghighirad A A, Noel N K, Song M H, Lee B R, Friend R H, Snaith H J 2019 J. Am. Chem. Soc. 141 1269Google Scholar

    [102]

    Yang J N, Song Y, Yao J S, Wang K H, Wang J J, Zhu B S, Yao M M, Rahman S U, Lan Y F, Fan F J, Yao H B 2020 J. Am. Chem. Soc. 142 2956Google Scholar

    [103]

    Tsai H, Nie W Y, Blancon J C, Stoumpos C C, Soe C M M, Yoo J, Crochet J, Tretiak S, Even J, Sadhanala A, Azzellino G, Brenes R, Ajayan P M, Bulovic V, Stranks S D, Friend R H, Kanatzidis M G, Mohite A D 2018 Adv. Mater. 30 1704217Google Scholar

    [104]

    Wang J, Shen H Z, Li W C, Wang S, Li J Z, Li D H 2019 Adv. Sci. 6 1802019Google Scholar

    [105]

    Lin H, Zhou C K, Tian Y, Siegrist T, Ma B W 2018 ACS Energy Lett. 3 54Google Scholar

    [106]

    Chen S, Shi G 2017 Adv. Mater. 29 1605448Google Scholar

    [107]

    Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N 2014 Adv. Mater. 26 7122Google Scholar

    [108]

    Song T B, Yokoyama T, Aramaki S, Kanatzidis M G 2017 ACS Energy Lett. 2 897Google Scholar

    [109]

    Li W Z, Li J W, Li J L, Fan J D, Mai Y H, Wang L D 2016 J. Mater. Chem. A 4 17104Google Scholar

    [110]

    Gao C, Jiang Y, Sun C, Han J, He T, Huang Y, Yao K, Han M, Wang X, Wang Y, Gao Y, Liu Y, Yuan M, Liang H 2020 ACS Photonics 7 1915Google Scholar

    [111]

    Hoshi H, Shigeeda N, Dai T 2016 Mater. Lett. 183 391Google Scholar

    [112]

    Ricciarelli D, Meggiolaro D, Ambrosio F, De Angelis F 2020 ACS Energy Lett. 5 2787Google Scholar

    [113]

    Meng X Y, Lin J B, Liu X, He X, Wang Y, Noda T, Wu T H, Yang X D, Han L Y 2019 Advanced Materials 31 1903721

  • [1] Li Xue, Cao Bao-Long, Wang Ming-Hao, Feng Zeng-Qin, Chen Shu-Fen. Perovskite light-emitting diode based on combination of modified hole-injection layer and polymer composite emission layer. Acta Physica Sinica, 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [2] Wu Jia-Long, Dou Yong-Jiang, Zhang Jian-Feng, Wang Hao-Ran, Yang Xu-Yong. Perovskite light-emitting diodes based on solution-processed metal-doped nickel oxide hole injection layer. Acta Physica Sinica, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [3] Wu Hai-Yan, Tang Jian-Xin, Li Yan-Qing. Efficient and stable blue perovskite light emitting diodes based on defect passivation. Acta Physica Sinica, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [4] Chen Jia-Mei, Su Hang, Li Wan, Zhang Li-Lai, Suo Xin-Lei, Qin Jing, Zhu Kun, Li Guo-Long. Research progress of enhancing perovskite light emitting diodes with light extraction. Acta Physica Sinica, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [5] Li Zhen-Chao, Chen Zi-Ming, Zou Guang-Rui-Xing, Yip Hin-Lap, Cao Yong. Applications of organic additives in metal halide perovskite light-emitting diodes. Acta Physica Sinica, 2019, 68(15): 158505. doi: 10.7498/aps.68.20190307
    [6] Huang Wei, Li Yue-Long, Ren Hui-Zhi, Wang Peng-Yang, Wei Chang-Chun, Hou Guo-Fu, Zhang De-Kun, Xu Sheng-Zhi, Wang Guang-Cai, Zhao Ying, Yuan Ming-Jian, Zhang Xiao-Dan. Perovskite light-emitting diodes based on n-type nanocrystalline silicon oxide electron injection layer. Acta Physica Sinica, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [7] Qu Zi-Han, Chu Ze-Ma, Zhang Xing-Wang, You Jing-Bi. Research progress of efficient green perovskite light emitting diodes. Acta Physica Sinica, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [8] Feng Bo, Deng Biao, Liu Le-Gong, Li Zeng-Cheng, Feng Mei-Xin, Zhao Han-Min, Sun Qian. Effect of plasma surface treatment on embedded n-contact for GaN-based blue light-emitting diodes grown on Si substrate. Acta Physica Sinica, 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [9] Zhang Chao-Yu, Xiong Chuan-Bing, Tang Ying-Wen, Huang Bin-Bin, Huang Ji-Feng, Wang Guang-Xu, Liu Jun-Lin, Jiang Feng-Yi. Changes of micro zone luminescent properties and stress of GaN-based light emitting diode film grown on patterned silicon substrate, induced by the removal of the substrate and AlN buffer layer. Acta Physica Sinica, 2015, 64(18): 187801. doi: 10.7498/aps.64.187801
    [10] Chen Wei-Chao, Tang Hui-Li, Luo Ping, Ma Wei-Wei, Xu Xiao-Dong, Qian Xiao-Bo, Jiang Da-Peng, Wu Feng, Wang Jing-Ya, Xu Jun. Research progress of substrate materials used for GaN-Based light emitting diodes. Acta Physica Sinica, 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
    [11] Chen Xin-Lian, Kong Fan-Min, Li Kang, Gao Hui, Yue Qing-Yang. Improvement of light extraction efficiency of GaN-based blue light-emitting diode by disorder photonic crystal. Acta Physica Sinica, 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [12] Chen Huan-Ting, Lü Yi-Jun, Gao Yu-Lin, Chen Zhong, Zhuang Rong-Rong, Zhou Xiao-Fang, Zhou Hai-Guang. The physical characteristic study on luminance uniformity and temperature for power GaN LEDs chip. Acta Physica Sinica, 2012, 61(16): 167104. doi: 10.7498/aps.61.167104
    [13] Yue Qing-Yang, Kong Fan-Min, Li Kang, Zhao Jia. Study on the light extraction efficiency of GaN-based light emitting diode by using the defects of the photonic crystals. Acta Physica Sinica, 2012, 61(20): 208502. doi: 10.7498/aps.61.208502
    [14] Li Shui-Qing, Wang Lai, Han Yan-Jun, Luo Yi, Deng He-Qing, Qiu Jian-Sheng, Zhang Jie. A new growth method of roughed p-GaN in GaN-based light emitting diodes. Acta Physica Sinica, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [15] Wang Guang-Xu, Tao Xi-Xia, Xiong Chuan-Bing, Liu Jun-Lin, Feng Fei-Fei, Zhang Meng, Jiang Feng-Yi. Effects of Ni-assisted annealing on p-type contact resistivity of GaN-based LED films grown on Si(111) substrates. Acta Physica Sinica, 2011, 60(7): 078503. doi: 10.7498/aps.60.078503
    [16] Li Bing-Qian, Zheng Tong-Chang, Xia Zheng-Hao. Temperature characteristics of the forward voltage of GaN based blue light emitting diodes. Acta Physica Sinica, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [17] Li Bing-Qian, Liu Yu-Hua, Feng Yu-Chun. The power dissipation of equivalent series resistance and its influence on lumen efficiency of GaN based high power light-emitting diodes. Acta Physica Sinica, 2008, 57(1): 477-481. doi: 10.7498/aps.57.477
    [18] Shen Guang-Di, Zhang Jian-Ming, Zou De-Shu, Xu Chen, Gu Xiao-Ling. Research on effects of current spreading and optimized contact scheme for high-power GaN-based light-emitting diodes. Acta Physica Sinica, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [19] Zhang Jian-Ming, Zou De-Shu, Xu Chen, Gu Xiao-Ling, Shen Guang-Di. Effects of optimized contact scheme on the performance of high-power GaN-based light-emitting diodes. Acta Physica Sinica, 2007, 56(10): 6003-6007. doi: 10.7498/aps.56.6003
    [20] Luo Yi, Guo Wen-Ping, Shao Jia-Ping, Hu Hui, Han Yan-Jun, Xue Song, Wang Lai, Sun Chang-Zheng, Hao Zhi-Biao. A study on wavelength stability of GaN-based blue light emitting diodes. Acta Physica Sinica, 2004, 53(8): 2720-2723. doi: 10.7498/aps.53.2720
Metrics
  • Abstract views:  12822
  • PDF Downloads:  423
  • Cited By: 0
Publishing process
  • Received Date:  08 August 2020
  • Accepted Date:  08 October 2020
  • Available Online:  06 February 2021
  • Published Online:  20 February 2021

/

返回文章
返回
Baidu
map