Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Accelerating super-resolution ultrasound localization microscopy using generative adversarial net

Sui Yi-Hui Guo Xing-Yi Yu Jun-Jin Alexander A. Solovev Ta De-An Xu Kai-Liang

Citation:

Accelerating super-resolution ultrasound localization microscopy using generative adversarial net

Sui Yi-Hui, Guo Xing-Yi, Yu Jun-Jin, Alexander A. Solovev, Ta De-An, Xu Kai-Liang
PDF
HTML
Get Citation
  • Ultrafast ultrasound localization microscopy (uULM) has broken through the fundamental acoustic diffraction limit by accumulating thousands of sub-wavelength microbubble localisation points and improved the spatial resolution by more than one order of magnitude, which is conducive to clinical diagnosis. By localizing individually injected microbubbles and tracking their movement with a subwavelength resolution, the vasculature microscopy can be achieved with micrometer scale. However, the reconstruction of a uULM image often requires tens or even hundreds of seconds of continuous long-range image acquisition, which limits its clinical application. In order to solve this problem, a generative adversarial network (GAN) based deep learning method is proposed to reconstruct the super-resolution ultrasound localization microscopy. In vivo uULM ultrasound datasets are used to train the network to reconstruct dense vascular networks via localized microbubbles. This approach is validated by using another in-vivo dataset obtained in a rat brain. Results show that GAN based ultrafast ultrasound localization microscopy (GAN-uULM) can resolve micro vessels smaller than 10 μm. Besides, GAN-uULM is able to distinguish small vessels that cannot be continuously reconstructed by using a standard uULM reconstruction method. Saturation parameter based on counting the number of explored pixels is used to evaluate the reconstruction quality. The proposed reconstruction approach reduces the data requirement by half and thus significantly accelerates the uULM imaging. It is illustrasted that for a dataset of 292 s ultrafast acquisition, the saturation of standard uULM image is 33%, while that of GAN-uULM can reach 46%. Fourier ring correlation (FRC) method is utilized to measure the spatial resolution in uULM. Resolutions of the images obtained by standard uULM and GAN-ULM are 7.8 μm and 8.9 μm, respectively.In conclusion, the developed deep learning model is able to connect trajectories with less computational complexity and avoids manual tuning and trajectory screening, providing an effective solution for accelerating ultrasound localization microscopy.
      Corresponding author: Xu Kai-Liang, xukl@fudan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974081, 51961145108), and the Shanghai Rising Star Program, China (Grant No. 20QC1400200).
    [1]

    钟传钰, 郑元义 2021 中国医学影像技术 37 1799Google Scholar

    Zhong C Y, Zheng Y Y 2021 Chin. J. Med. Imaging Technol. 37 1799Google Scholar

    [2]

    王宇森, 陶鸿根 1991 中华内分泌代谢杂志 7 2

    Wang Y S, Tao H G 1991 Chin. J. Endocrinol. Metab. 7 2

    [3]

    Chugh B P, Lerch J P, Yu L X, Pienkowski M, Harrison R V, Henkelman R M, Sled J G 2009 Neuroimage 47 1312Google Scholar

    [4]

    Huang C H, Chen C C V, Siow T Y, Hsu S H S, Hsu Y H, Jaw F S, Chang C 2013 PLoS One 8 e78186Google Scholar

    [5]

    Hong G, Lee J C, Robinson J T, Raaz U, Xie L M, Huang, N F, Cooke J P, Dai H J 2012 Nat. Med. 18 1841Google Scholar

    [6]

    Yao J, Wang L, Yang J M, Maslov K I, Wong T T W, Li L, Huang C H, Zou J, Wang L V 2015 Nat. Methods 12 407Google Scholar

    [7]

    O"Reilly M A, Hynynen K 2013 Med. Phys. 40 110701Google Scholar

    [8]

    Jiang C, Li Y, Xu K, Ta D 2021 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68 72Google Scholar

    [9]

    臧佳琦, 许凯亮, 韩清见, 陆起涌, 梅永丰, 他得安 2021 70 114304Google Scholar

    Zang J Q, Xu K L, Han Q J, Lu Q Y, Mei Y F, Ta D A 2021 Acta Phys. Sin. 70 114304Google Scholar

    [10]

    Sui Y H, Yan S Y, Zang J Q, Liu X, Ta D A, Wang W Q, Xu K L 2021 IEEE International Ultrasonics Symposium (IUS)

    [11]

    Sui Y H, Yan S Y, Yu J J, Song J P, Ta D A, Wang W Q, Xu K L 2022 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69 2425Google Scholar

    [12]

    Couture O, Bannouf S, Montaldo G, Aubry J F, Fink M 2009 Ultrasound Med. Biol. 35 1908Google Scholar

    [13]

    Viessmann O M, Eckersley R J, Christensen-Jeffries K, Tang M X, Dunsby C 2013 Phys. Med. Biol. 58 6447Google Scholar

    [14]

    Desailly Y, Couture O, Fink M, Tanter M 2013 Appl. Phys. Lett. 103 189Google Scholar

    [15]

    Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, Couture O, Tanter M 2015 Nature 527 499Google Scholar

    [16]

    Fanglue L, Shelton S E, Espíndola D, Rojas J D, Gianmarco P, Dayton P A 2017 Theranostics 7 196Google Scholar

    [17]

    Xu K L, Guo X Y, Sui Y H, Hingot V, Couture O, Ta D A, Wang W Q 2021 IEEE International Ultrasonics Symposium (IUS)

    [18]

    郁钧瑾, 郭星奕, 隋怡晖, 宋剑平, 他得安, 梅永丰, 许凯亮 2022 71 174302Google Scholar

    Yu J J, Guo X Y, Sui Y H, Song J P, Ta D A , Mei Y F, Xu K L 2022 Acta Phys. Sin. 71 174302Google Scholar

    [19]

    Demené C, Robin J, Dizeux A, Heiles B, Pernot M, Tanter M, Perren, Transcranial F 2021 Nat. Biomed. Eng. 5 219Google Scholar

    [20]

    Huang C, Zhang W, Gong P, Lok U W, Chen S 2021 Phys. Med. Biol. 66 8Google Scholar

    [21]

    Couture O, Hingot V, Heiles B, Muleki-Seya P, Tanter M 2018 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65 1304Google Scholar

    [22]

    Christensen-Jeffries K, Couture O, Dayton P A, Eldar Y, Hynynen K, Kiessling F, O'Reilly M, Pinton G, Schmitz G, Tang M, Tanter M, van Sloun R J G 2020 Ultrasound Med. Biol. 46 4Google Scholar

    [23]

    Youn J, Ommen M L, Stuart M B, Thomsen E V, Jensenet J A 2019 IEEE International Ultrasonics Symposium (IUS)

    [24]

    Sloun R J G v , Solomon O, Bruce M, Khaing Z Z, Wijkstra H, Eldar Y C, Mischi M 2021 IEEE Trans. Med. Imaging 40 829Google Scholar

    [25]

    Liu X, Zhou T, Lu M, Yang Y, He Q, Luo J 2020 IEEE Trans. Med. Imaging 39 3064Google Scholar

    [26]

    Bar-Zion A, Solomon O, Tremblay-Darveau C, Adam D, Eldar Y. C 2018 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65 2365Google Scholar

    [27]

    Bar-Zion A, Tremblay-Darveau C, Solomon O, Adam D, Eldar Y. C 2016 IEEE Trans. Med. Imaging 36 169Google Scholar

    [28]

    Nieuwenhuizen R P, Lidke K A, Bates M, Puig D L, Grunwald D, Stallinga S, Rieger B 2013 Nat. Methods 10 557Google Scholar

    [29]

    Jensen J A, Holm O, Jerisen L J, Bendsen H, Nikolov I S 2005 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52 881Google Scholar

    [30]

    Tanter M, Fink M Ultrafast Imaging in Biomedical Ultrasound. 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 102Google Scholar

    [31]

    Montaldo G, Tanter M, Bercoff J, Benech N, Fink M 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 489Google Scholar

    [32]

    Ledoux L, Brands P J, Hoeks A 1997 Ultrason. Imaging 19 1Google Scholar

    [33]

    Baranger J, Arnal B, Perren F, Baud O, Tanter M, Demené C 2018 IEEE Trans. Med. Imaging 37 1574Google Scholar

    [34]

    Demené C, Deffieux T, Pernot M, Osmanski B F, Biran V, Gennisson J L, Sieu L A, Bergel A, Franqui S, Correas J M 2015 IEEE Trans. Med. Imaging 34 2271Google Scholar

    [35]

    Hingot V, Errico C, Tanter M, Couture O 2017 Ultrasonics 77 17Google Scholar

    [36]

    Heiles  B, Chavignon  A, Hingot V, Lopez P, Teston E, Couture O 2021 Nat. Biomed. Eng. 6 605

    [37]

    Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y 2014 Adv. Neural Inf. Process. Syst. 27 2672Google Scholar

    [38]

    Ronneberger O, Fischer P, Brox T 2015 Medical Image Computing and Computer-Assisted Intervention, PT III 9351 234

    [39]

    Nitish S, Geoffrey H, Alex K, Ilya S, Ruslan S 2014 J. Mach. Learn. Res. 15 1929Google Scholar

    [40]

    Zhao H, Gallo O, Frosio I, Kautz J 2017 IEEE Trans. Comput. Imaging 3 47Google Scholar

    [41]

    Ouyang W, Aristov A, Hao X, Lelek M, Zimmer C 2018 Nat. Biotechnol. 36 460Google Scholar

    [42]

    Hingot V, Errico C, Heiles B, Rahal L, Tanter M, Couture O 2019 Sci. Rep. 9 2456Google Scholar

    [43]

    Hingot V, Chavignon A, Heiles B, Couture O 2021 IEEE Trans. Med. Imaging 40 3812Google Scholar

  • 图 1  超声成像分辨率及微泡的B-mode图像 (a) 两微泡间距恰好为半波长; (b) 两微泡间距在半波长内; (c) 实验测量的微泡点扩散函数及其中心定位(由红点标记)

    Figure 1.  The resolution of ultrasound imaging and a B-mode image of microbubbles: (a) The two sources are exactly half a wavelength apart; (b) the two sources are within a half-wavelength distance; (c) microbubbles appearing as point spread function and their localizations.

    图 2  uULM常规流程 (a) 超快超声数据在体采集; (b) 杂波滤除; (c) 运动校准; (d) 微泡定位; (e) 微泡追踪; (f) 超分辨率图像重建

    Figure 2.  uULM conventional process: (a) In vivo acquisition of ultrafast ultrasound data ; (b) clutter filtering; (c) motion correction; (d) microbubble localization; (e) microbubble tracking; (f) super-resolution image reconstruction.

    图 3  GAN-uULM方法整体框架

    Figure 3.  Overall architecture of the GAN-uULM method.

    图 4  小动物用超快超分辨率超声脑成像实验平台

    Figure 4.  Ultrafast super-resolution ultrasound brain imaging experimental platform for small animals.

    图 5  大鼠脑超分辨率定位显微 (a) 使用标准uULM方法的血管造影; (b) 使用GAN-uULM方法的血管造影

    Figure 5.  Ultrasound Localization Microscopy in a rat brain: (a) Angiogram reconstruction using the standard uULM method; (b) angiogram reconstruction using the GAN-uULM method.

    图 6  全血管造影的局部特写及其沿白色虚线的强度分布图. 使用标准uULM (a) 和GAN-uULM (b) 分别对体内数据集进行uULM血管造影得到的局部放大图; (c) 绿色和蓝色曲线表示沿水平虚线的强度分布图

    Figure 6.  Zoomed-in regions of interest from the whole angiogram and their intensity profiles along the white dashed line. Magnified regions from uULM Angiograms for an in-vivo dataset using the standard uULM method (a) and the GAN-uULM (b); (c) the intensity profiles along a given horizontal dashed line overlaid in green and blue.

    图 7  血管饱和度与累积采集时长的关系曲线

    Figure 7.  The relationship curves between vascular saturation and cumulative acquisition time.

    图 8  不同采集时长对应的超分辨率血流图像 (a), (b) uULM和GAN-uULM在采集时长为40 s时的血流图像; (c), (d) uULM和GAN-uULM在采集时长为80 s时的血流图像

    Figure 8.  Super-resolution blood flow images with different cumulative acquisition times: (a), (b) The results of uULM and GAN-uULM with acquisition time of 40 s; (c), (d) the results of uULM and GAN-uULM with acquisition time of 80 s.

    图 9  基于FRC曲线的分辨率测量 (a), (b) 将重建结果随机拆分的两个子图像; (c), (d) 2D FFT得到频谱图; (e) FRC曲线, FRC曲线与1/2 bit (黄色)阈值曲线的两个交点被用于测定图像分辨率; (f) 分辨率与累积采集时长的关系曲线

    Figure 9.  Resolution measurements based on FRC curves: (a), (b) Two sub-images obtained by randomly splitting the reconstruction results; (c), (d) the frequency spectrograms obtained by 2D FFT; (e) the FRC curves, the two intersections of the FRC curves with the 1/2 bit (yellow) threshold curve are used to determine the image resolution; (f) the relationship curves between resolution and cumulative acquisition time.

    Baidu
  • [1]

    钟传钰, 郑元义 2021 中国医学影像技术 37 1799Google Scholar

    Zhong C Y, Zheng Y Y 2021 Chin. J. Med. Imaging Technol. 37 1799Google Scholar

    [2]

    王宇森, 陶鸿根 1991 中华内分泌代谢杂志 7 2

    Wang Y S, Tao H G 1991 Chin. J. Endocrinol. Metab. 7 2

    [3]

    Chugh B P, Lerch J P, Yu L X, Pienkowski M, Harrison R V, Henkelman R M, Sled J G 2009 Neuroimage 47 1312Google Scholar

    [4]

    Huang C H, Chen C C V, Siow T Y, Hsu S H S, Hsu Y H, Jaw F S, Chang C 2013 PLoS One 8 e78186Google Scholar

    [5]

    Hong G, Lee J C, Robinson J T, Raaz U, Xie L M, Huang, N F, Cooke J P, Dai H J 2012 Nat. Med. 18 1841Google Scholar

    [6]

    Yao J, Wang L, Yang J M, Maslov K I, Wong T T W, Li L, Huang C H, Zou J, Wang L V 2015 Nat. Methods 12 407Google Scholar

    [7]

    O"Reilly M A, Hynynen K 2013 Med. Phys. 40 110701Google Scholar

    [8]

    Jiang C, Li Y, Xu K, Ta D 2021 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68 72Google Scholar

    [9]

    臧佳琦, 许凯亮, 韩清见, 陆起涌, 梅永丰, 他得安 2021 70 114304Google Scholar

    Zang J Q, Xu K L, Han Q J, Lu Q Y, Mei Y F, Ta D A 2021 Acta Phys. Sin. 70 114304Google Scholar

    [10]

    Sui Y H, Yan S Y, Zang J Q, Liu X, Ta D A, Wang W Q, Xu K L 2021 IEEE International Ultrasonics Symposium (IUS)

    [11]

    Sui Y H, Yan S Y, Yu J J, Song J P, Ta D A, Wang W Q, Xu K L 2022 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69 2425Google Scholar

    [12]

    Couture O, Bannouf S, Montaldo G, Aubry J F, Fink M 2009 Ultrasound Med. Biol. 35 1908Google Scholar

    [13]

    Viessmann O M, Eckersley R J, Christensen-Jeffries K, Tang M X, Dunsby C 2013 Phys. Med. Biol. 58 6447Google Scholar

    [14]

    Desailly Y, Couture O, Fink M, Tanter M 2013 Appl. Phys. Lett. 103 189Google Scholar

    [15]

    Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, Couture O, Tanter M 2015 Nature 527 499Google Scholar

    [16]

    Fanglue L, Shelton S E, Espíndola D, Rojas J D, Gianmarco P, Dayton P A 2017 Theranostics 7 196Google Scholar

    [17]

    Xu K L, Guo X Y, Sui Y H, Hingot V, Couture O, Ta D A, Wang W Q 2021 IEEE International Ultrasonics Symposium (IUS)

    [18]

    郁钧瑾, 郭星奕, 隋怡晖, 宋剑平, 他得安, 梅永丰, 许凯亮 2022 71 174302Google Scholar

    Yu J J, Guo X Y, Sui Y H, Song J P, Ta D A , Mei Y F, Xu K L 2022 Acta Phys. Sin. 71 174302Google Scholar

    [19]

    Demené C, Robin J, Dizeux A, Heiles B, Pernot M, Tanter M, Perren, Transcranial F 2021 Nat. Biomed. Eng. 5 219Google Scholar

    [20]

    Huang C, Zhang W, Gong P, Lok U W, Chen S 2021 Phys. Med. Biol. 66 8Google Scholar

    [21]

    Couture O, Hingot V, Heiles B, Muleki-Seya P, Tanter M 2018 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65 1304Google Scholar

    [22]

    Christensen-Jeffries K, Couture O, Dayton P A, Eldar Y, Hynynen K, Kiessling F, O'Reilly M, Pinton G, Schmitz G, Tang M, Tanter M, van Sloun R J G 2020 Ultrasound Med. Biol. 46 4Google Scholar

    [23]

    Youn J, Ommen M L, Stuart M B, Thomsen E V, Jensenet J A 2019 IEEE International Ultrasonics Symposium (IUS)

    [24]

    Sloun R J G v , Solomon O, Bruce M, Khaing Z Z, Wijkstra H, Eldar Y C, Mischi M 2021 IEEE Trans. Med. Imaging 40 829Google Scholar

    [25]

    Liu X, Zhou T, Lu M, Yang Y, He Q, Luo J 2020 IEEE Trans. Med. Imaging 39 3064Google Scholar

    [26]

    Bar-Zion A, Solomon O, Tremblay-Darveau C, Adam D, Eldar Y. C 2018 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65 2365Google Scholar

    [27]

    Bar-Zion A, Tremblay-Darveau C, Solomon O, Adam D, Eldar Y. C 2016 IEEE Trans. Med. Imaging 36 169Google Scholar

    [28]

    Nieuwenhuizen R P, Lidke K A, Bates M, Puig D L, Grunwald D, Stallinga S, Rieger B 2013 Nat. Methods 10 557Google Scholar

    [29]

    Jensen J A, Holm O, Jerisen L J, Bendsen H, Nikolov I S 2005 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52 881Google Scholar

    [30]

    Tanter M, Fink M Ultrafast Imaging in Biomedical Ultrasound. 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 102Google Scholar

    [31]

    Montaldo G, Tanter M, Bercoff J, Benech N, Fink M 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 489Google Scholar

    [32]

    Ledoux L, Brands P J, Hoeks A 1997 Ultrason. Imaging 19 1Google Scholar

    [33]

    Baranger J, Arnal B, Perren F, Baud O, Tanter M, Demené C 2018 IEEE Trans. Med. Imaging 37 1574Google Scholar

    [34]

    Demené C, Deffieux T, Pernot M, Osmanski B F, Biran V, Gennisson J L, Sieu L A, Bergel A, Franqui S, Correas J M 2015 IEEE Trans. Med. Imaging 34 2271Google Scholar

    [35]

    Hingot V, Errico C, Tanter M, Couture O 2017 Ultrasonics 77 17Google Scholar

    [36]

    Heiles  B, Chavignon  A, Hingot V, Lopez P, Teston E, Couture O 2021 Nat. Biomed. Eng. 6 605

    [37]

    Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y 2014 Adv. Neural Inf. Process. Syst. 27 2672Google Scholar

    [38]

    Ronneberger O, Fischer P, Brox T 2015 Medical Image Computing and Computer-Assisted Intervention, PT III 9351 234

    [39]

    Nitish S, Geoffrey H, Alex K, Ilya S, Ruslan S 2014 J. Mach. Learn. Res. 15 1929Google Scholar

    [40]

    Zhao H, Gallo O, Frosio I, Kautz J 2017 IEEE Trans. Comput. Imaging 3 47Google Scholar

    [41]

    Ouyang W, Aristov A, Hao X, Lelek M, Zimmer C 2018 Nat. Biotechnol. 36 460Google Scholar

    [42]

    Hingot V, Errico C, Heiles B, Rahal L, Tanter M, Couture O 2019 Sci. Rep. 9 2456Google Scholar

    [43]

    Hingot V, Chavignon A, Heiles B, Couture O 2021 IEEE Trans. Med. Imaging 40 3812Google Scholar

  • [1] Xiang Meng, He Piao, Wang Tian-Yu, Yuan Lin, Deng Kai, Liu Fei, Shao Xiao-Peng. Computational polarized colorful Fourier ptychography imaging: a novel information reuse technique of polarization of scattering light field. Acta Physica Sinica, 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [2] Xiang Peng-Cheng, Cai Cong-Bo, Wang Jie-Chao, Cai Shu-Hui, Chen Zhong. Super-resolved reconstruction method for spatiotemporally encoded magnetic resonance imaging based on deep neural network. Acta Physica Sinica, 2022, 71(5): 058702. doi: 10.7498/aps.71.20211754
    [3] Zhan Qing-Liang, Bai Chun-Jin, Ge Yao-Jun. Deep learning representation of flow time history for complex flow field. Acta Physica Sinica, 2022, 71(22): 224701. doi: 10.7498/aps.71.20221314
    [4] Zhu Qi, Xu Duo, Zhang Yuan-Jun, Li Yu-Juan, Wang Wen, Zhang Hai-Yan. Ultrasonic detection of white etching defect based on convolution neural network. Acta Physica Sinica, 2022, 71(24): 244301. doi: 10.7498/aps.71.20221504
    [5] Yu Jun-Jin, Guo Xing-Yi, Sui Yi-Hui, Song Jian-Ping, Ta De-An, Mei Yong-Feng, Xu Kai-Liang. Ultrafast ultrasound localization microscopy method for spinal cord mircovasculature imaging. Acta Physica Sinica, 2022, 71(17): 174302. doi: 10.7498/aps.71.20220629
    [6] Zhao Wei-Rui, Wang Hao, Zhang Lu, Zhao Yue-Jin, Chu Chun-Yan. High-precision co-phase method for segments based on a convolutional neural network. Acta Physica Sinica, 2022, 71(16): 164202. doi: 10.7498/aps.71.20220434
    [7] Tang Guo-Zhi, Wang Lei, Li Ding-Gen. Predetermined thermal conductivity porous medium generated by conditional generation adversarial network. Acta Physica Sinica, 2021, 70(5): 054401. doi: 10.7498/aps.70.20201061
    [8] Huang Wei-Jian, Li Yong-Tao, Huang Yuan. Prediction of chaotic time series using hybrid neural network and attention mechanism. Acta Physica Sinica, 2021, 70(1): 010501. doi: 10.7498/aps.70.20200899
    [9] Zhou Jing, Zhang Xiao-Fang, Zhao Yan-Geng. Phase retrieval wavefront sensing based on image fusion and convolutional neural network. Acta Physica Sinica, 2021, 70(5): 054201. doi: 10.7498/aps.70.20201362
    [10] Xu Qi-Wei, Wang Pei-Pei, Zeng Zhen-Jia, Huang Ze-Bin, Zhou Xin-Xing, Liu Jun-Min, Li Ying, Chen Shu-Qing, Fan Dian-Yuan. Extracting atmospheric turbulence phase using deep convolutional neural network. Acta Physica Sinica, 2020, 69(1): 014209. doi: 10.7498/aps.69.20190982
    [11] Wang Chen-Yang, Duan Qian-Qian, Zhou Kai, Yao Jing, Su Min, Fu Yi-Chao, Ji Jun-Yang, Hong Xin, Liu Xue-Qin, Wang Zhi-Yong. A hybrid model for photovoltaic power prediction of both convolutional and long short-term memory neural networks optimized by genetic algorithm. Acta Physica Sinica, 2020, 69(10): 100701. doi: 10.7498/aps.69.20191935
    [12] Wang Shu, Ren Yi-Chong, Rao Rui-Zhong, Miao Xi-Kui. Influence of atmosphere attenuation on quantum interferometric radar. Acta Physica Sinica, 2017, 66(15): 150301. doi: 10.7498/aps.66.150301
    [13] Gong Zhi-Shuang, Wang Bing-Zhong, Wang Ren, Zang Rui, Wang Xiao-Hua. Far-field time reversal subwavelength imaging of sources based on grating structure. Acta Physica Sinica, 2017, 66(4): 044101. doi: 10.7498/aps.66.044101
    [14] He Lin-Yang, Liu Jing-Hong, Li Gang. Super resolution of aerial image by means of polyphase components reconstruction. Acta Physica Sinica, 2015, 64(11): 114208. doi: 10.7498/aps.64.114208
    [15] Deng Cheng-Zhi, Tian Wei, Chen Pan, Wang Sheng-Qian, Zhu Hua-Sheng, Hu Sai-Feng. Infrared image super-resolution via locality-constrained group sparse model. Acta Physica Sinica, 2014, 63(4): 044202. doi: 10.7498/aps.63.044202
    [16] Liang Mu-Sheng, Wang Bing-Zhong, Zhang Zhi-Min, Ding Shuai, Zang Rui. Subwavelength antenna array based on far-field time reversal. Acta Physica Sinica, 2013, 62(5): 058401. doi: 10.7498/aps.62.058401
    [17] Zhou Shu-Bo, Yuan Yan, Su Li-Juan. A regularized super resolution algorithm based on the double threshold Huber norm estimation. Acta Physica Sinica, 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [18] Chen Ying-Ming, Wang Bing-Zhong, Ge Guang-Ding. Mechanism of spatial super-resolution of time-reversed microwave system. Acta Physica Sinica, 2012, 61(2): 024101. doi: 10.7498/aps.61.024101
    [19] Ge Guang-Ding, Wang Bing-Zhong, Huang Hai-Yan, Zheng Gang. Super-resolution characteristics of time-reversed electromagnetic wave. Acta Physica Sinica, 2009, 58(12): 8249-8253. doi: 10.7498/aps.58.8249
    [20] ZHANG HAI-TAO, GONG MA-LI, ZHAO DA-ZUN, YAN PING, CUI RUI-ZHEN, JIA WEI-PU. SUPERRESOLUTION BY MICRO-ZOOMING TECHNIQUE. Acta Physica Sinica, 2001, 50(8): 1486-1491. doi: 10.7498/aps.50.1486
Metrics
  • Abstract views:  6126
  • PDF Downloads:  193
  • Cited By: 0
Publishing process
  • Received Date:  14 May 2022
  • Accepted Date:  01 August 2022
  • Available Online:  14 November 2022
  • Published Online:  20 November 2022

/

返回文章
返回
Baidu
map